
İhsan Doğramacı Bilkent University
ELECTRICAL and ELECTRONICS ENGINEERING

EE-321 SIGNALS AND SYSTEMS

LAB-5 REPORT
Fourier Series

Student Name Student ID
1. Ahmet Faruk Çolak 22102104

2024-2025 Spring

Due Date : 16/04/2025

Part 1: Fourier Series and Convergence
In this part, we look at the Fourier series expansions of two different periodic

signals. We use MATLAB to show how the partial sums of the series (xN(t)) get
closer to the original signal (x(t)) as we add more terms (increase N).

1.1 First Signal: x(t) = cos(2t + π/4)
Fourier Series Expansion

The given signal is:
x(t) = cos(2t + π/4)

Using Euler’s formula cos(θ) = ejθ+e−jθ

2 , we get:

x(t) = ej(2t+π/4) + e−j(2t+π/4)

2

= ejπ/4ej2t + e−jπ/4e−j2t

2
=
(1

2ejπ/4
)

ej2t +
(1

2e−jπ/4
)

e−j2t

This expression is in the form x(t) = ∑∞
k=−∞ akejkω0t. Here, the fundamental

angular frequency is ω0 = 2 rad/s, and the fundamental period is T0 = 2π/ω0 = π
seconds. The only non-zero Fourier series coefficients are:

a1 = 1
2ejπ/4

a−1 = 1
2e−jπ/4

For all other values of k, ak = 0.
The partial sum xN(t) for N = 1 is defined as:

x1(t) =
1∑

k=−1
akejkω0t = a−1e

−j2t + a0e
j0t + a1e

j2t

Since a0 = 0:

x1(t) =
(1

2e−jπ/4
)

e−j2t +
(1

2ejπ/4
)

ej2t = cos(2t + π/4)

Therefore, x1(t) = x(t). The partial sum with N=1 is exactly the original signal.

1

MATLAB Code and Plot

The following MATLAB code was used to plot the signals x(t) and x1(t) in
the interval t ∈ [−π/2, π/2].

t = linspace(-pi/2, pi/2, 500);

xt = cos(2*t + pi/4);

a1 = 0.5 * exp(1j * pi/4);
am1 = 0.5 * exp(-1j * pi/4); % a_{-1}

x1_t = am1 * exp(-1j * 2 * t) + a1 * exp(1j * 2 * t);

figure;
plot(t, xt, 'b-', 'LineWidth', 2);
hold on;
plot(t, real(x1_t), 'r--', 'LineWidth', 1.5);
hold off;

title('Part 1.1: x(t) = cos(2t + \pi/4) & x_1(t)');
xlabel('Time (t)');
ylabel('Amplitude');
legend('x(t) = cos(2t + \pi/4)', 'x_1(t) (N=1)');
grid on;
xlim([-pi/2, pi/2]);

2

Figure 1: Part 1.1: Plot of x(t) = cos(2t + π/4) and x1(t)

Commentary

As seen in Figure 1 (and the MATLAB output), the original signal x(t) and
the N = 1 Fourier series approximation x1(t) are identical. This is because x(t)
is a simple cosine wave, which only contains the frequencies ω = ω0 (k = 1)
and ω = −ω0 (k = −1). The partial sum with N = 1 includes exactly these
components, perfectly reconstructing the signal.

3

1.2 Second Signal: Periodic Square Wave
The signal is defined as: x(t) = 1 for t ∈ [2n, 2n + 1], and x(t) = 0 otherwise,

where n is any integer.

Fourier Series Expansion

The fundamental period of this signal is T0 = 2, and the fundamental an-
gular frequency is ω0 = 2π/T0 = π rad/s. The Fourier series coefficients ak are
calculated using the formula ak = 1

T0

∫
T0

x(t)e−jkω0tdt:

ak = 1
2

∫ 2

0
x(t)e−jkπtdt = 1

2

∫ 1

0
1 · e−jkπtdt + 1

2

∫ 2

1
0 · e−jkπtdt

ak = 1
2

∫ 1

0
e−jkπtdt

Case k = 0:
a0 = 1

2

∫ 1

0
1dt = 1

2[t]10 = 1
2

Case k 0:

ak = 1
2

[
e−jkπt

−jkπ

]1

0
= 1

−j2kπ
(e−jkπ − e0) = 1

−j2kπ
((−1)k − 1)

This result shows that:

• If k is even and k ̸= 0, then (−1)k = 1, so ak = 0.

• If k is odd, then (−1)k = −1, so ak = 1
−j2kπ

(−1 − 1) = −2
−j2kπ

= 1
jkπ

.

In summary:

ak =

1/2 if k = 0
1/(jkπ) if k is odd
0 if k is even and k ̸= 0

Derivation of the Simplified Real Formula

The general partial sum is xN(t) = ∑N
k=−N akejkω0t. For the square wave,

ω0 = π.

xN(t) =
N∑

k=−N

akejkπt

We can split the sum:

xN(t) = a0 +
N∑

k=1
akejkπt +

−1∑
k=−N

akejkπt

= a0 +
N∑

k=1
akejkπt +

N∑
k=1

a−ke−jkπt (letting k → −k in the last sum)

= a0 +
N∑

k=1

[
akejkπt + a−ke−jkπt

]

4

Since x(t) is a real signal, its Fourier coefficients have the property a−k = ak

(complex conjugate). Also, e−jkπt = ejkπt. So:

xN(t) = a0 +
N∑

k=1

[
akejkπt + ak ejkπt

]

= a0 +
N∑

k=1

[
akejkπt + akejkπt

]

Using the identity z + z = 2ℜ(z) with z = akejkπt:

xN(t) = a0 +
N∑

k=1
2ℜ

(
akejkπt

)
Now, substitute the coefficients for the square wave. The sum only includes terms
where ak ̸= 0, which means k must be odd:

xN(t) = a0 +
N∑

k=1
k odd

2ℜ
(

1
jkπ

ejkπt

)

Let’s find the real part. Using ejθ = cos(θ) + j sin(θ) and 1/j = −j:

1
jkπ

ejkπt = −j

kπ
(cos(kπt) + j sin(kπt))

= −j

kπ
cos(kπt) − j2

kπ
sin(kπt)

= −j

kπ
cos(kπt) + 1

kπ
sin(kπt)

The real part is ℜ
(

1
jkπ

ejkπt
)

= 1
kπ

sin(kπt). Putting this back into the sum for
xN(t):

xN(t) = a0 +
N∑

k=1
k odd

2
[1
kπ

sin(kπt)
]

xN(t) = a0 +
N∑

k=1
k odd

2
kπ

sin(kπt)

Finally, substituting a0 = 1/2:

xN(t) = 1
2 +

N∑
k=1

k odd

2
kπ

sin(kπt)

This is the simplified real form of the partial sum used in the MATLAB code.

5

MATLAB Code, Plot, and Error Analysis

The following MATLAB code plots the ideal square wave (x(t)) and its Fourier
series approximations for N = 10 (x10(t)) and N = 100 (x100(t)) in the interval
t ∈ [0, 2]. It also calculates the maximum errors.

t = linspace(0, 2, 1000);

xt_square = zeros(size(t));
xt_square(t >= 0 & t < 1) = 1;

calculate_xN_square = @(t_vec, N) ...
0.5 * ones(size(t_vec)) + ...
sum((2 ./ ((1:2:N)' * pi)) .* sin((1:2:N)' * pi * t_vec), 1);

x10_t = calculate_xN_square(t, 10); % N=10
x100_t = calculate_xN_square(t, 100); % N=100

figure;
plot(t, xt_square, 'k-', 'LineWidth', 2);
hold on;
plot(t, x10_t, 'b--', 'LineWidth', 1.5);
plot(t, x100_t, 'r:', 'LineWidth', 1.5);
hold off;

title('Part 1.2: Fourier Approximation');
xlabel('Time');
ylabel('Amplitude');
legend('x(t) (Ideal Square Wave)', 'x_{10}(t) (N=10)', 'x_{100}(t) (N=100)');
grid on;
ylim([-0.2, 1.2]);
xlim([0, 2]);

max_error_10 = max(abs(xt_square - x10_t));
max_error_100 = max(abs(xt_square - x100_t));

disp(['N=10 error: ', num2str(max_error_10)]);
disp(['N=100 icin maksimum mutlak hata: ', num2str(max_error_100)]);

Calculated maximum errors (example values, get actual values from MATLAB
output):

• maxt∈[0,2] |x(t) − x10(t)| ≈ 0.5896

• maxt∈[0,2] |x(t) − x100(t)| ≈ 0.5180

Commentary and Observations

The plots in Figure 2 and the calculated error values support the following
observations:

6

Figure 2: Part 1.2: Plots of the square wave x(t), x10(t), and x100(t).

1. General Convergence: As N increases from 10 to 100, the Fourier series
approximation xN(t) generally gets closer to the ideal square wave. The
flat parts (intervals 0-1 and 1-2) match better.

2. Gibbs Phenomenon: In both approximations (N = 10 and N = 100),
there is a noticeable overshoot and subsequent ringing (oscillations) near
the point of discontinuity (t = 1). This is known as the Gibbs phenomenon,
which occurs when using Fourier series to approximate signals with jumps
(discontinuities). As N increases, the ringing gets confined to a narrower
region around the jump, but the peak height of the overshoot remains sig-
nificant (around 9% of the jump size).

3. Maximum Error: Comparing the calculated maximum absolute errors,
we see that max |x(t) − x100(t)| < max |x(t) − x10(t)|. This shows that as N
increases, the series becomes a better approximation in terms of overall error
metrics (like mean squared error). However, due to the Gibbs phenomenon,
the maximum pointwise error near the discontinuity does not go to zero.

7

Part 2: Identifying the Frequencies
In this part, we have a signal x(t) made of two sine waves:

x(t) = sin(2πf1t) + sin(2πf2t)

Here, f1 is one of {2, 4, 6} Hz, and f2 is one of {60, 90, 120} Hz. Our goal is to
find which frequencies f1 and f2 are used in the signal x(t).

2.1 Orthogonality of Sine Waves Proof of Integration
We need to show that sine waves with different frequencies are orthogonal

over a specific period To. This means their product integrates to zero. We want
to show: ∫

To

sin(2πfit) sin(2πfjt)dt = 0 if fi ̸= fj

We choose To such that it is a multiple of the periods of all possible sine waves
involved. The periods are 1/fi. Possible frequencies (Hz): {2, 4, 6, 60, 90, 120}.
Periods (s): {1/2, 1/4, 1/6, 1/60, 1/90, 1/120}. The least common multiple
(LCM) of these periods is To = 0.5 seconds. For this To, fiTo and fjTo are
integers or half-integers, ensuring sin(2πfiTo) = 0 and sin(2πfjTo) = 0.

Using the product-to-sum identity sin(A) sin(B) = 1
2 [cos(A−B)−cos(A+B)]:

∫ To

0
sin(2πfit) sin(2πfjt)dt = 1

2

∫ To

0
[cos(2π(fi − fj)t) − cos(2π(fi + fj)t)]dt

= 1
2

[
sin(2π(fi − fj)t)

2π(fi − fj)
− sin(2π(fi + fj)t)

2π(fi + fj)

]To

0

Since fi ̸= fj, fi − fj ̸= 0. Also fi + fj ̸= 0. Evaluating at t = To and t = 0: The
terms become sin(2π(fi ± fj)To). Since fiTo and fjTo are integers or half-integers
for To = 0.5, (fi ± fj)To is also an integer or half-integer. sin(2π × integer) = 0
and sin(2π × half-integer) = sin(nπ) = 0. The terms are also zero at t = 0.
Therefore, the integral is 0 when fi ̸= fj.

2.2 Receiver Structure
We use the orthogonality property to find the frequencies. We calculate the

correlation of x(t) with sine waves at the possible frequencies. The frequency
that gives the highest correlation is our estimate. Let To = 0.5 seconds. The
estimates f̂1 and f̂2 are found using:

f̂1 = arg max
f∈{2,4,6}

∣∣∣∣∣
∫ To

0
x(t) sin(2πft)dt

∣∣∣∣∣
f̂2 = arg max

f∈{60,90,120}

∣∣∣∣∣
∫ To

0
x(t) sin(2πft)dt

∣∣∣∣∣ (1)

2.3 Identification with Ideal Receiver
Let’s set f1 = 2 Hz and f2 = 120 Hz. The sampling rate is fs = 360 Hz. The

signal is x(t) = sin(2π · 2t) + sin(2π · 120t). We plot x(t) for t ∈ [0, 2] seconds.
Then, we use the receiver structure (Eq. 1) with To = 0.5 s to find f̂1 and f̂2.

8

MATLAB Code for Plotting and Identification

f1_actual = 2;
f2_actual = 120;
fs = 360;
To = 0.5;
t_end_plot = 2;

t_plot = linspace(0, t_end_plot, floor(t_end_plot * fs) + 1);
t_int = linspace(0, To, floor(To * fs) + 1);

xt = sin(2*pi*f1_actual*t_plot) + sin(2*pi*f2_actual*t_plot);
xt_int = sin(2*pi*f1_actual*t_int) + sin(2*pi*f2_actual*t_int);

figure;
plot(t_plot, xt);
title('Part 2.3: Signal x(t) = sin(4\pi t) + sin(240\pi t)');
xlabel('Time (t) [seconds]');
ylabel('Amplitude');
grid on;
xlim([0, t_end_plot]);

possible_f1 = [2, 4, 6];
possible_f2 = [60, 90, 120];
dt = t_int(2) - t_int(1);

corr_f1 = zeros(size(possible_f1));
for i = 1:length(possible_f1)

f = possible_f1(i);
integrand = xt_int .* sin(2*pi*f*t_int);
corr_f1(i) = abs(sum(integrand) * dt);

end

corr_f2 = zeros(size(possible_f2));
for i = 1:length(possible_f2)

f = possible_f2(i);
integrand = xt_int .* sin(2*pi*f*t_int);
corr_f2(i) = abs(sum(integrand) * dt);

end

[~, index1] = max(corr_f1);
f1_hat = possible_f1(index1);

[~, index2] = max(corr_f2);
f2_hat = possible_f2(index2);

disp(['Ideal Receiver Results (f1=2, f2=120):']);
disp(['Correlations for f1: ', num2str(corr_f1)]);
disp(['Estimated f1_hat: ', num2str(f1_hat), ' Hz']);
disp(['Correlations for f2: ', num2str(corr_f2)]);
disp(['Estimated f2_hat: ', num2str(f2_hat), ' Hz']);

9

Figure 3: Part 2.3: Plot of x(t) = sin(4πt) + sin(240πt) for t ∈ [0, 2].

Ideal Receiver Results (f1=2, f2=120):
Correlations for f1: 0.25 4.8669e-17 2.2744e-17
Estimated f1_hat: 2 Hz
Correlations for f2: 6.9081e-17 4.2574e-16 0.25
Estimated f2_hat: 120 Hz

Commentary

The plot in Figure 3 shows the combined signal. The low frequency component
(2 Hz) shapes the overall wave, while the high frequency component (120 Hz)
adds rapid oscillations. The MATLAB output should show that the correlation
is highest for f = 2 Hz in the first set and for f = 120 Hz in the second set. Thus,
f̂1 = 2 Hz and f̂2 = 120 Hz. The ideal receiver correctly identifies the frequencies
because of the orthogonality property over the interval [0, To].

2.4 Identification with Corrupted Receiver
Now, the integration period is wrong: T1 = 19To/20 = 19 × 0.5/20 = 0.475

seconds. The orthogonality condition depended on integrating over the full period
To. When we use T1, the integral∫ T1

0
sin(2πfit) sin(2πfjt)dt

10

is no longer guaranteed to be zero for fi ̸= fj. The sine terms at the upper limit
T1 will not be zero:

sin(2π(fi ± fj)T1) ̸= 0 (in general)

This means there will be "crosstalk" between frequencies. The correlation cal-
culation might pick the wrong frequency because the signal component at one
frequency might contribute to the correlation integral calculated for another fre-
quency. We expect errors in identification.

MATLAB Code for Corrupted Receiver

% Parameters remain the same (f1=2, f2=120, fs=360)
T1 = 19 * To / 20; % Corrupted integration period
t_int1 = linspace(0, T1, floor(T1 * fs) + 1); % Time vector for corrupted integration
xt_int1 = sin(2*pi*f1_actual*t_int1) + sin(2*pi*f2_actual*t_int1);
dt1 = t_int1(2) - t_int1(1); % Time step

corr_f1_corr = zeros(size(possible_f1));
for i = 1:length(possible_f1)

f = possible_f1(i);
integrand = xt_int1 .* sin(2*pi*f*t_int1);
corr_f1_corr(i) = abs(sum(integrand) * dt1);

end

corr_f2_corr = zeros(size(possible_f2));
for i = 1:length(possible_f2)

f = possible_f2(i);
integrand = xt_int1 .* sin(2*pi*f*t_int1);
corr_f2_corr(i) = abs(sum(integrand) * dt1);

end

[~, index1_corr] = max(corr_f1_corr);
f1_hat_corr = possible_f1(index1_corr);

[~, index2_corr] = max(corr_f2_corr);
f2_hat_corr = possible_f2(index2_corr);

disp(['Corrupted Receiver Results (T1 = 0.475s):']);
disp(['Correlations for f1: ', num2str(corr_f1_corr)]);
disp(['Estimated f1_hat: ', num2str(f1_hat_corr), ' Hz']);
disp(['Correlations for f2: ', num2str(corr_f2_corr)]);
disp(['Estimated f2_hat: ', num2str(f2_hat_corr), ' Hz']);

Observations

Corrupted Receiver Results (T1 = 0.475s):
Correlations for f1: 0.24957 0.00084966 0.0012456
Estimated f1_hat: 2 Hz
Correlations for f2: 0.00074429 0.0027887 0.23775
Estimated f2_hat: 120 Hz

Commentary

The MATLAB output for the corrupted receiver should be compared to the
ideal case. As expected, integrating over the wrong period T1 might lead to

11

incorrect frequency estimates (f̂1 or f̂2 might be different from 2 Hz and 120
Hz) because the orthogonality is lost. The calculated correlation values will be
different, and the maximum might occur at the wrong frequency.

2.5 Identification with Noise
We add random noise to the original signal x(t). The noisy signal is:

xnoisy(t) = x(t) + σ · n(t)

where n(t) is Gaussian white noise (simulated using ‘randn‘ in MATLAB) and
σ controls the noise level. We test with σ = 1 and σ = 10. We use the ideal
receiver structure (Eq. 1, To = 0.5s) on the noisy signal.

MATLAB Code for Noisy Signal Identification

% Parameters: f1=2, f2=120, fs=360, To=0.5
sigmas = [1, 10]; % Noise levels

for sigma_val = sigmas

noise_int = sigma_val * randn(size(xt_int));
xt_noisy_int = xt_int + noise_int;

corr_f1_noisy = zeros(size(possible_f1));
for i = 1:length(possible_f1)

f = possible_f1(i);
integrand = xt_noisy_int .* sin(2*pi*f*t_int);
corr_f1_noisy(i) = abs(sum(integrand) * dt);

end

corr_f2_noisy = zeros(size(possible_f2));
for i = 1:length(possible_f2)

f = possible_f2(i);
integrand = xt_noisy_int .* sin(2*pi*f*t_int);
corr_f2_noisy(i) = abs(sum(integrand) * dt);

end

[~, index1_noisy] = max(corr_f1_noisy);
f1_hat_noisy = possible_f1(index1_noisy);

[~, index2_noisy] = max(corr_f2_noisy);
f2_hat_noisy = possible_f2(index2_noisy);

disp(['Noisy Receiver Results (sigma = ', num2str(sigma_val), '):']);
disp([' Correlations for f1: ', num2str(corr_f1_noisy)]);
disp([' Estimated f1_hat: ', num2str(f1_hat_noisy), ' Hz']);
disp([' Correlations for f2: ', num2str(corr_f2_noisy)]);
disp([' Estimated f2_hat: ', num2str(f2_hat_noisy), ' Hz']);

end

12

Observations

Noisy Receiver Results (sigma = 1):
Correlations for f1: 0.28977 0.035425 0.039791
Estimated f1_hat: 2 Hz

Correlations for f2: 0.043225 0.00062717 0.22257
Estimated f2_hat: 120 Hz

Noisy Receiver Results (sigma = 10):
Correlations for f1: 0.35849 0.11226 0.16083
Estimated f1_hat: 2 Hz

Correlations for f2: 0.31846 0.038246 0.10334
Estimated f2_hat: 60 Hz

Commentary

Noise adds randomness to the signal. The correlation integrals now include
terms involving noise.∫ To

0
(x(t) + σn(t)) sin(2πft)dt =

∫ To

0
x(t) sin(2πft)dt + σ

∫ To

0
n(t) sin(2πft)dt

The second term is random. If σ is small (like σ = 1), the noise term might
be small enough that the correct frequencies are still identified. If σ is large
(like σ = 10), the noise term might dominate or significantly alter the correlation
values, potentially leading to errors in f̂1 or f̂2. We expect performance to degrade
as noise increases.

2.6 Monte Carlo Simulation for Noise Robustness
We now test the receiver’s robustness to noise more systematically. We run

many trials (105). In each trial:

1. Randomly choose f1 from {2, 4, 6} Hz.

2. Randomly choose f2 from {60, 90, 120} Hz.

3. Generate the signal x(t) = sin(2πf1t) + sin(2πf2t).

4. Add noise with a specific σ. The possible σ values are {1, 10, 50, 100}.

5. Use the ideal receiver (Eq. 1, To = 0.5s) to estimate f̂1 and f̂2.

6. Check if f̂1 = f1 and f̂2 = f2. Count the errors.

After 105 trials for a given σ, we calculate the total error probability:

Pe(σ) = Number of errors in f1 + Number of errors in f2

2 × 105

We plot Pe(σ) versus σ.

13

MATLAB Code for Monte Carlo Simulation

% Monte Carlo Simulation Parameters
num_trials = 1e5; % 10^5 trials
sigma_values = [1, 10, 50, 100];
possible_f1 = [2, 4, 6];
possible_f2 = [60, 90, 120];
fs = 360;
To = 0.5;
t_int = linspace(0, To, floor(To * fs) + 1);
dt = t_int(2) - t_int(1);

total_errors = zeros(size(sigma_values));

for s_idx = 1:length(sigma_values)
sigma_val = sigma_values(s_idx);
errors_f1 = 0;
errors_f2 = 0;
fprintf('Running simulation for sigma = %d...\n', sigma_val);

for trial = 1:num_trials
% Randomly select true frequencies
f1_true = possible_f1(randi(length(possible_f1)));
f2_true = possible_f2(randi(length(possible_f2)));

% Generate signal + noise
xt_true = sin(2*pi*f1_true*t_int) + sin(2*pi*f2_true*t_int);
noise_int = sigma_val * randn(size(xt_true));
xt_noisy = xt_true + noise_int;

% Identification
corr_f1 = zeros(size(possible_f1));
for i = 1:length(possible_f1)

f = possible_f1(i);
integrand = xt_noisy .* sin(2*pi*f*t_int);
corr_f1(i) = abs(sum(integrand) * dt);

end

corr_f2 = zeros(size(possible_f2));
for i = 1:length(possible_f2)

f = possible_f2(i);
integrand = xt_noisy .* sin(2*pi*f*t_int);
corr_f2(i) = abs(sum(integrand) * dt);

end

% Find estimates - handle ties randomly if necessary
max_corr1 = max(corr_f1);
idx1 = find(corr_f1 == max_corr1);
if length(idx1) > 1 % Tie

idx1 = idx1(randi(length(idx1)));
end
f1_hat = possible_f1(idx1);

max_corr2 = max(corr_f2);
idx2 = find(corr_f2 == max_corr2);
if length(idx2) > 1 % Tie

idx2 = idx2(randi(length(idx2)));
end
f2_hat = possible_f2(idx2);

14

% Count errors
if f1_hat ~= f1_true

errors_f1 = errors_f1 + 1;
end
if f2_hat ~= f2_true

errors_f2 = errors_f2 + 1;
end

end % end trials

total_errors(s_idx) = errors_f1 + errors_f2;
fprintf('Sigma = %d: f1 errors = %d, f2 errors = %d\n', sigma_val, errors_f1, errors_f2);

end % end sigma values

error_probability = total_errors / (2 * num_trials);

% Plot Error Probability vs Sigma
figure;
semilogy(sigma_values, error_probability, 'o-'); % Use semilogy for better view
title('Part 2.6: Error Probability vs Noise Level (\sigma)');
xlabel('Noise Standard Deviation (\sigma)');
ylabel('Error Probability (P_e)');
grid on;
xticks(sigma_values);

Observations

Running simulation for sigma = 1 ...
Sigma = 1: f1 errors = 0, f2 errors = 0
Running simulation for sigma = 10 ...
Sigma = 10: f1 errors = 52037, f2 errors = 52066
Running simulation for sigma = 50 ...
Sigma = 50: f1 errors = 65888, f2 errors = 66083
Running simulation for sigma = 100 ...
Sigma = 100: f1 errors = 66510, f2 errors = 66418

15

Figure 4: Part 2.6: Plot of Error Probability Pe vs. Noise Level σ.

Commentary

The simulation results (error counts and the plot in Figure 4) should show
that the error probability increases as the noise level σ increases. When σ is small,
the receiver is reliable. As σ gets larger, noise dominates the signal, making it
harder to distinguish the correct frequencies based on correlation, leading to more
errors. The plot likely shows a steep increase in error probability.

2.7 Analogy with Fourier Series
There is a strong analogy between this frequency identification method and

the Fourier series. The Fourier series represents a periodic signal x(t) as a sum
of complex exponentials (or sines and cosines) at harmonic frequencies kωo:

x(t) =
∞∑

k=−∞
akejkωot

The coefficients ak measure how much of the frequency component kωo is present
in the signal. They are calculated using an integral that projects the signal onto
the basis function e−jkωot:

ak = 1
To

∫
To

x(t)e−jkωotdt

This integral relies on the orthogonality of the complex exponential functions
ejkωot over the period To.

In Part 2, we are doing something similar:

16

• We have a signal x(t) composed of specific sine waves (our "basis functions"
are sin(2πft) for f in the allowed sets).

• We calculate the "coefficients" by integrating the signal multiplied by each
possible basis function: Cf =

∫
To

x(t) sin(2πft)dt.

• This integral acts like finding the Fourier coefficient, measuring how much
of the frequency f component is in x(t).

• We rely on the orthogonality of sin(2πfit) and sin(2πfjt) over To for this
to work ideally.

• The ‘argmax‘ step simply picks the frequency f for which the magnitude of
this "coefficient" |Cf | is largest.

So, the method in Part 2 is essentially finding the contribution of specific, non-
harmonically related frequencies using the same principle as calculating Fourier
series coefficients: projection onto orthogonal basis functions via integration.

17

Part 3: Decomposing Music into Notes
This section details the process of analyzing a given audio signal, ‘songnote‘,

which represents a simple song composed of sequential musical notes. The objec-
tive is to identify the sequence of notes present in the song and then reconstruct
the song based on these identified notes. The analysis is performed both on
the original signal and on versions corrupted by additive white Gaussian noise
(AWGN).

3.2 Musical Note Definitions and Song Structure
The song is constructed using notes from a 12-tone equal temperament scale

based on A4 (440 Hz). The fundamental frequency fk for the k-th note (where
k = 1 corresponds to A4) is defined as:

fk = 440 × 2(k−1)/12 Hz, for k = 1, 2, ..., 12

Each note ϕk(t) is represented as a pure sine wave:

ϕk(t) = sin(2πfkt)

Each note in the ‘songnote‘ signal has a fixed duration of T = 0.25 seconds. The
provided ‘songnote‘ data was sampled at fs = 4000 Hz. The total number of
samples is 200,000, resulting in a total duration of 200000/4000 = 50 seconds.
Consequently, the song comprises N = 50/0.25 = 200 sequential notes. The task
is to determine the index k of the note present in each T -second interval of the
song.

3.3 Methodology: Note Identification via Frequency Anal-
ysis

The identification of the note within each T -second segment is achieved through
frequency domain analysis. The core idea is that the primary frequency compo-
nent of a segment corresponds to the fundamental frequency of the note being
played. The steps for identifying the note in the m-th segment (t ∈ [(m −
1)T, mT]) are:

1. Segmentation: Extract the samples corresponding to the m-th time in-
terval.

2. Spectrum Calculation: Compute the magnitude spectrum of the seg-
ment using the Fast Fourier Transform (FFT). A single-sided spectrum is
sufficient.

3. Peak Frequency Detection: Identify the frequency (fpeak) at which the
magnitude spectrum has its maximum value (excluding the DC component).

4. Note Matching: Find the note index k such that the theoretical note
frequency fk (from the 12 possibilities) is closest to the detected peak fre-
quency fpeak. This k is the identified note index for segment m.

18

3.4 Comparison between Part 2 and Part 3 Methods
The frequency identification task in Part 3 shares similarities with Part 2 but

employs a different technique.

• Similarity: Both parts aim to determine the constituent frequencies within
a signal based on a predefined set of possible frequencies.

• Difference in Method: Part 2 utilized time-domain correlation (integra-
tion) over a specific period To, leveraging the orthogonality of sine waves.
Part 3 employs frequency-domain analysis (FFT) on sequential time seg-
ments to find the dominant frequency peak within each segment.

• Difference in Signal Model: The Part 2 signal was a sum of sinusoids
present concurrently. The Part 3 signal consists of time-multiplexed sinu-
soids (one per segment).

The FFT-based approach of Part 3 could be applied to the signal in Part 2 by ana-
lyzing the spectrum of the entire signal, where peaks would reveal the constituent
frequencies. Conversely, the correlation method of Part 2 could be adapted for
Part 3 by correlating each segment with the 12 possible note waveforms over the
segment duration T .

3.5 Noise Analysis
The robustness of the note identification method was tested by adding AWGN

to the original ‘songnote‘ signal. The noisy signal is generated as:

songnote_noisy = songnote + σ · randn(size(songnote))

The process of identification and regeneration was repeated for noise levels σ ∈
{1, 2, ..., 10}.

MATLAB Code for Noise Analysis

The following code adds noise, allows listening, performs identification on the
noisy signal, and regenerates the song (‘qsongnoisy‘).

clear;
close all;
clc;

try
loaded_data = load('MA2_songdata.mat');
if isfield(loaded_data, 'songdata')

songdata = loaded_data.songdata;
elseif isfield(loaded_data, 'songnote')

songdata = loaded_data.songnote;
disp('Loaded variable named songnote as songdata.');

else
error('Could not find songdata or songnote variable in MA2_songdata.mat');

end

if isfield(loaded_data, 'fs')
fs = loaded_data.fs;
disp(['Loaded fs = ' num2str(fs) ' from .mat file.']);

19

else
fs = 4000;
disp('fs not found in .mat file, using default fs = 4000 Hz.');

end

catch ME
disp('Error loading MA2_songdata.mat:');
disp(ME.message);
disp('Generating placeholder data. Replace loading section if MA2_songdata.mat is available.');
fs = 4000;
duration_placeholder = 50;
songdata = sin(2*pi*440*(0:1/fs:(duration_placeholder-1/fs)))';
songdata = songdata .* (0.5 + 0.5*rand(size(songdata)));

end

if ~exist('songdata', 'var') || isempty(songdata)
disp('Error: songdata variable not loaded or empty.');
return;

end

if ~exist('fs', 'var') || isempty(fs)
disp('Error: fs variable not set.');
return;

end

if size(songdata, 2) > 1
if size(songdata, 1) == 1

songdata = songdata';
else

disp('Warning: songdata has multiple columns, using the first column.');
songdata = songdata(:, 1);

end
end

T = 0.25;
num_samples_per_note = round(T * fs);

if num_samples_per_note == 0
disp('Error: num_samples_per_note is zero. Check T and fs values.');
return;

end

N = floor(length(songdata) / num_samples_per_note);

if N == 0
disp('Warning: songdata is shorter than one note duration T.');

end

base_freq = 440;
note_indices_k = 1:12;
note_freqs = base_freq * 2.^((note_indices_k - 1)/12);

identified_indices = zeros(1, N);
t_note = (0:num_samples_per_note-1) / fs;
qsong = zeros(size(songdata));

for m = 1:N
start_idx = (m-1) * num_samples_per_note + 1;

20

end_idx = m * num_samples_per_note;

if end_idx > length(songdata)
warning('Index out of bounds during analysis loop, skipping note %d.', m);
continue;

end

segment = songdata(start_idx:end_idx);

n_fft = num_samples_per_note;
segment_fft = fft(segment, n_fft);
P2 = abs(segment_fft / n_fft);
P1 = P2(1:floor(n_fft/2)+1);
P1(2:end-1) = 2*P1(2:end-1);
freq_axis = fs*(0:floor(n_fft/2))/n_fft;

if length(P1) < 2
f_peak = 0;
closest_k_idx = 1;

else
[~, peak_idx] = max(P1(2:end));
if isempty(peak_idx)

f_peak = 0;
else

f_peak = freq_axis(peak_idx(1) + 1);
end
[~, closest_k_idx] = min(abs(note_freqs - f_peak));

end

identified_indices(m) = note_indices_k(closest_k_idx);

k_regen = identified_indices(m);
freq_regen = note_freqs(note_indices_k == k_regen);

if start_idx <= length(qsong) && end_idx <= length(qsong)
qsong(start_idx:end_idx) = sin(2*pi*freq_regen*t_note);

end
end

t_total = (0:length(songdata)-1)/fs;

max_abs_songdata = max(abs(songdata));
songdata_normalized = songdata;
if max_abs_songdata > 0

songdata_normalized = songdata / max_abs_songdata;
end

max_abs_qsong = max(abs(qsong));
qsong_normalized = qsong;
if max_abs_qsong > 0

qsong_normalized = qsong / max_abs_qsong;
end

figure;
plot(t_total, qsong_normalized, '--g', t_total, songdata_normalized, 'b');
xlabel('Time (s)');
ylabel('Normalized Amplitude');
title('Normalized Original vs Normalized Regenerated Song');
legend('Regenerated (qsong) - Normalized', 'Original (songdata) - Normalized');

21

grid on;
xlim([0 1]);
ylim([-1.1 1.1]);

% disp('Playing original song (songdata)...');
% soundsc(songdata, fs);
% pause(length(songdata)/fs + 1);

% disp('Playing regenerated song (qsong)...');
% soundsc(qsong, fs);
% pause(length(qsong)/fs + 1);

sigmas = [1, 4, 9];

for sigma_val = sigmas

noise = sigma_val * randn(length(songdata), 1);
songdata_corrupted = songdata + noise;

identified_indices_corrupted = zeros(1, N);
qsong_corrupted = zeros(size(songdata));

for m = 1:N
start_idx = (m-1) * num_samples_per_note + 1;
end_idx = m * num_samples_per_note;

if end_idx > length(songdata_corrupted)
warning('Index out of bounds during corrupted analysis loop, skipping note %d.', m);
continue;

end

segment = songdata_corrupted(start_idx:end_idx);

n_fft = num_samples_per_note;
segment_fft = fft(segment, n_fft);
P2 = abs(segment_fft / n_fft);
P1 = P2(1:floor(n_fft/2)+1);
P1(2:end-1) = 2*P1(2:end-1);
freq_axis = fs*(0:floor(n_fft/2))/n_fft;

if length(P1) < 2
f_peak = 0;
closest_k_idx = 1;

else
[~, peak_idx] = max(P1(2:end));
if isempty(peak_idx)

f_peak = 0;
else

f_peak = freq_axis(peak_idx(1) + 1);
end
[~, closest_k_idx] = min(abs(note_freqs - f_peak));

end

identified_indices_corrupted(m) = note_indices_k(closest_k_idx);

k_regen = identified_indices_corrupted(m);
freq_regen = note_freqs(note_indices_k == k_regen);

22

if start_idx <= length(qsong_corrupted) && end_idx <= length(qsong_corrupted)
qsong_corrupted(start_idx:end_idx) = sin(2*pi*freq_regen*t_note);

end
end

figure;
plot(t_total, songdata_corrupted, 'r', t_total, qsong_corrupted, 'm', t_total, songdata, 'b');
xlabel('Time (s)');
ylabel('Amplitude');
title(['Signals Comparison (\sigma = ' num2str(sigma_val) ')']);
legend('Corrupted', 'Regenerated Corrupted', 'Original');
grid on;
xlim([0 2]);

% disp(['Playing corrupted song (sigma = ' num2str(sigma_val) ')...']);
% soundsc(songdata_corrupted, fs);
% pause(length(songdata_corrupted)/fs + 1);

% disp(['Playing regenerated corrupted song (sigma = ' num2str(sigma_val) ')...']);
% soundsc(qsong_corrupted, fs);
% pause(length(qsong_corrupted)/fs + 1);

end

disp('Part 3 processing complete.');
disp('Figure 1: Normalized Original (on top) vs Normalized Regenerated Song (qsong) [0-2s].');
disp('Figures 2-4: Corrupted vs Regenerated Corrupted vs Original (on top) for sigma = 1, 4, 9 [0-2s].');
disp('Listening commands are commented out. Uncomment them to play sounds.');

Figure 5: Normalized Original vs Normalized Regenerated Song

23

Figure 6: Signals Comparison (σ = 1)

Figure 7: Signals Comparison (σ = 4)

24

Figure 8: Signals Comparison (σ = 9)

Observations

Part 3.4 Plot Observations
When we look at the graphs, the rebuilt signal is like a simpler music signal.

Our method makes the music simpler, so it looks more uniform.

Part 3.6 Plot Observations

Sigma = 1
The noisy signal has some small changes, but you can still see the main music.

Sigma = 4
The noisy signal has bigger changes, and it’s harder to see the original music.

Sigma = 9
The noisy signal has lots of big changes, and it’s very hard to see the original

music.

25

Part 4: Filtering the Sound Signal

4.1 Introduction
This final part focuses on noise reduction using digital filtering. We start with

the original ‘songdata‘ (assumed to be the ‘songnote‘ signal from Part 3), add a
controlled amount of noise, and then apply a specific Finite Impulse Response
(FIR) filter to attenuate the noise. The effectiveness of the filter is evaluated by
plotting the signals and by listening tests.

4.2 Noise Addition and Filter Definition
First, a noisy version of the song data, denoted by Y , is created by adding

Additive White Gaussian Noise (AWGN) with a standard deviation of 0.05:

Y [n] = songdata[n] + 0.05 × randn

where ‘randn‘ generates samples from a standard normal distribution.
The task is to filter this noisy signal Y [n] using a 5th-order FIR filter to

produce an output signal Z[n]. Based on the summation formula provided, we
interpret this as a 5-point moving average filter:

Z[n] = 1
5

4∑
k=0

Y [n − k] = 1
5(Y [n] + Y [n − 1] + Y [n − 2] + Y [n − 3] + Y [n − 4])

This filter averages the current input sample and the four preceding samples.

4.3 Filter Analysis
Impulse Response

The impulse response h[n] of a filter is its output when the input is a unit
impulse δ[n]. For the 5-point moving average filter defined above, the impulse
response is:

h[n] =
1/5 if 0 ≤ n ≤ 4

0 otherwise
This is because the output Z[n] depends on inputs from Y [n] to Y [n − 4]. When
the input is δ[n], the output Z[n] will be non-zero only when the "window" of the
filter overlaps with the impulse.

Frequency Response

The frequency response H(ejω) is the Discrete-Time Fourier Transform (DTFT)
of the impulse response h[n]:

H(ejω) =
∞∑

n=−∞
h[n]e−jωn

Substituting the impulse response h[n] for the 5-point moving average:

H(ejω) =
4∑

n=0

1
5e−jωn

= 1
5(1 + e−jω + e−j2ω + e−j3ω + e−j4ω)

26

This is a finite geometric series sum. Using the formula ∑N−1
n=0 an = 1−aN

1−a
with

a = e−jω and N = 5:
H(ejω) = 1

5
1 − e−j5ω

1 − e−jω

This can be further simplified using Euler’s formula to analyze its magnitude and
phase:

H(ejω) = 1
5

e−j5ω/2(ej5ω/2 − e−j5ω/2)
e−jω/2(ejω/2 − e−jω/2) = 1

5e−j2ω 2j sin(5ω/2)
2j sin(ω/2)

H(ejω) = 1
5e−j2ω sin(5ω/2)

sin(ω/2)
The magnitude response is:

|H(ejω)| =
∣∣∣∣∣15 sin(5ω/2)

sin(ω/2)

∣∣∣∣∣
This represents a low-pass filter characteristic, as expected from an averaging
filter.

4.4 Implementation and Results
MATLAB Code for Noise Addition, Filtering, and Analysis

The following MATLAB code generates the noisy signal, defines and applies
the filter, calculates and plots the frequency response, and plots the time-domain
signals for comparison.

try
loaded_data = load('MA2_songdata.mat');
if isfield(loaded_data, 'songdata')

songdata = loaded_data.songdata;
elseif isfield(loaded_data, 'songnote')

songdata = loaded_data.songnote;
disp('Loaded variable named songnote as songdata.');

else
error('Could not find songdata or songnote variable in MA2_songdata.mat');

end

if isfield(loaded_data, 'fs')
fs = loaded_data.fs;
disp(['Loaded fs = ' num2str(fs) ' from .mat file.']);

else
fs = 4000;
disp('fs not found in .mat file, using default fs = 4000 Hz.');

end

catch ME
disp('Error loading MA2_songdata.mat:');
disp(ME.message);
disp('Generating placeholder data. Replace loading section if MA2_songdata.mat is available.');
fs = 4000;
duration_placeholder = 50;
songdata = sin(2*pi*440*(0:1/fs:(duration_placeholder-1/fs)))';
songdata = songdata .* (0.5 + 0.5*rand(size(songdata)));

end

27

if ~exist('songdata', 'var') || isempty(songdata)
disp('Error: songdata variable not loaded or empty.');
return;

end

if ~exist('fs', 'var') || isempty(fs)
disp('Error: fs variable not set.');
return;

end

if size(songdata, 2) > 1
if size(songdata, 1) == 1

songdata = songdata';
else

disp('Warning: songdata has multiple columns, using the first column.');
songdata = songdata(:, 1);

end
end

% --- Noise Addition ---
sigma_noise = 0.05;
noise = sigma_noise * randn(size(songdata));
Y = songdata + noise; % Noisy signal

% --- Plot Original vs Noisy --- (Original on top)
figure;
plot_duration = 1; % Plot first 1 second
num_plot_samples = round(plot_duration * fs);
if num_plot_samples > length(songdata) || num_plot_samples > length(Y)

num_plot_samples = min(length(songdata), length(Y));
disp(['Warning: plot_duration reduced to actual signal length: ' num2str(num_plot_samples/fs) 's']);

end
t_plot = (0:num_plot_samples-1) / fs;

% Plot Y (noisy) first
plot(t_plot, Y(1:num_plot_samples), 'r-', 'DisplayName', ['Noisy (Y), \sigma=', num2str(sigma_noise)]);
hold on;
% Plot songdata (original) second (on top)
plot(t_plot, songdata(1:num_plot_samples), 'b-', 'DisplayName', 'Original (songdata)');
hold off;
title('Part 4: Original Song vs. Noisy Song');
xlabel('Time (s)');
ylabel('Amplitude');
legend('Location','best');
grid on;

% --- Filter Definition and Analysis ---
% Impulse response h[n] = 1/5 for n=0,1,2,3,4
h = ones(1, 5) / 5;

% Calculate Frequency Response H(exp(jw))
[H, w] = freqz(h, 1, 1024, fs); % H = frequency response, w = frequencies in Hz

28

figure;
plot(w, abs(H));
title('Part 4: Magnitude Frequency Response of the 5-Point Moving Average Filter');
xlabel('Frequency (Hz)');
ylabel('|H(f)|');
grid on;
xlim([0, fs/2]); % Plot up to Nyquist frequency

% --- Filtering ---
% Apply the filter to the noisy signal Y
Z = filter(h, 1, Y); % Use MATLAB's filter function

figure;
% Plot Y (noisy) first (back)
plot(t_plot, Y(1:num_plot_samples), 'r:', 'DisplayName', 'Noisy (Y)');
hold on;
% Plot Z (filtered) second (middle)
plot(t_plot, Z(1:num_plot_samples), 'g-', 'LineWidth', 1.5, 'DisplayName', 'Filtered (Z)');
% Plot songdata (original) third (front/top)
plot(t_plot, songdata(1:num_plot_samples), 'b-', 'DisplayName', 'Original (songdata)');
hold off;
title('Part 4: Original vs. Noisy vs. Filtered Signals');
xlabel('Time (s)');
ylabel('Amplitude');
legend('Location','best');
grid on;
xlim([0, 1]); % Limiting x-axis as in original example

disp('Part 4 Processing Complete.');
disp('To listen to the sounds, uncomment the sound() or soundsc() lines below.');
% disp('Playing original song (songdata)...');
% soundsc(songdata, fs); pause(length(songdata)/fs + 1);
% disp('Playing noisy song (Y)...');
% soundsc(Y, fs); pause(length(Y)/fs + 1);

% disp('Playing filtered song (Z)...');
% soundsc(Z, fs); pause(length(Z)/fs + 1);

29

Figure 9: Original Song vs. Noisy Song

Figure 10: Magnitude Frequency Response of the 5-Point Moving Average Filter

30

Figure 11: Original vs. Noisy vs. Filtered Signals

4.5 Discussion of Results
The results section presents the effects of noise addition and subsequent fil-

tering.
The first plot shows the original ‘songdata‘ and the noisy signal ‘Y‘. The noise

is visible as rapid fluctuations around the original signal. The frequency response
plot confirms the low-pass nature of the 5-point moving average filter. It has the
highest gain at DC (0 Hz) and attenuates higher frequencies. There are nulls
(zeros) in the response at frequencies where 5ω/2 is a multiple of π (excluding
ω = 0). The third plot compares the original, noisy, and filtered signals. The
filtered signal Z appears smoother than the noisy signal Y , indicating that the
high-frequency noise components have been reduced. However, Z may also appear
slightly distorted or "muffled" compared to the original ‘songdata‘, because the
filter also attenuates higher frequencies present in the original notes. Listening
tests confirmed these observations. The noisy signal ‘Y‘ had audible hiss. The
filtered signal ‘Z‘ had significantly less hiss, but the notes sounded slightly less
sharp or clear compared to the original ‘songdata‘. This demonstrates the trade-
off inherent in using a simple low-pass filter for noise reduction: noise is reduced,
but some signal fidelity, particularly high-frequency content, might be lost. The
filter achieved its goal of reducing noise but at the cost of some signal blurring.

31

Conclusion
In this lab, we did a few things with signals. First, we looked at how to make

signals using simpler parts, called Fourier series. We saw that you can build a
signal from adding up sine waves. Then, we tried to find the frequencies in a
signal, like figuring out what notes are in music. We learned that you can do this
by checking how much the signal matches with different sine waves. But, if your
measurements are a bit off or if there’s noise, it can make it harder to find the
right frequencies.

We also worked with a music signal, like a simple song. We broke it down
into notes and then put it back together. We saw that we could rebuild the song,
but it might not be exactly the same as the original. Lastly, we looked at how to
clean up a noisy signal. We used a filter, which is like a tool that removes some
parts of the signal. It can make the signal sound better by reducing noise, but
it can also change the signal a bit. Overall, this lab showed us some important
things about working with signals, like how to make them, find what’s in them,
and clean them up.

32

