
İhsan Doğramacı Bilkent University
ELECTRICAL and ELECTRONICS ENGINEERING

EE-321 SIGNALS AND SYSTEMS

LAB-4 REPORT
Fourier Series

Student Name Student ID
1. Ahmet Faruk Çolak 22102104

2024-2025 Spring

Due Date : 21/03/2025

General Introduction
In this Lab, we are asked to analyze the Fourier series representation of

continuous-time periodic signals by implementing a custom MATLAB function
that computes their coefficients. Then, we observe how basic time-domain oper-
ations affect these coefficients. Finally, we apply the analysis to a second-order
linear system to examine how it shapes the spectrum of an input signal.

1 Part 1

Introduction
In this part of the lab report, I describe how I implemented the Fourier series

analysis for continuous-time periodic signals using MATLAB. The main goal is to
create a function called FSAnalysis that calculates the Fourier series coefficients
for a given signal over one period.

Theory
A continuous-time periodic signal can be represented as a sum of harmonically

related sinusoids. The synthesis formula is given by:

x(t) =
∞∑

k=−∞
akejkω0t

where ak are the Fourier series coefficients and ω0 = 2π
T0

is the fundamental fre-
quency of the signal.

To compute the Fourier series coefficients, we use the analysis formula:

ak = 1
T0

∫
T0

x(t)e−jkω0t dt

Since we work in MATLAB with discrete samples, we approximate the integral
by a sum. If the signal is sampled with a period Ts and there are N samples in
one period (with T0 = N · Ts), then the coefficient am is approximated as:

am ≈ Ts

T0

N−1∑
n=0

x[n] e−jm 2π
N

n

for each harmonic m from −k to k.

MATLAB Implementation
The MATLAB function FSAnalysis is written to compute these coefficients.

The function takes three inputs:

• x: A vector containing one complete period of the sampled signal.

• k: The number of coefficients to compute on each side (i.e., from −k to k).

• Ts: The sampling period.

The output is a vector of Fourier series coefficients.

1

FSAnalysis Function Code

function fsCoeffs = FSAnalysis(x, k, Ts)
% FSAnalysis: Compute Fourier series coefficients for a periodic signal.
% x - One period of the sampled continuous-time signal (vector)
% k - Number of coefficients on each side (from -k to k)
% Ts - Sampling period
% Output:
% fsCoeffs - Fourier series coefficients (vector of length 2*k+1)

N = length(x); % Number of samples in one period
T0 = N * Ts; % Signal period
fsCoeffs = zeros(2*k+1, 1); % Initialize coefficients vector

n = 0:N-1; % Sample indices
for m = -k:k

% Compute coefficient a_m using the discrete sum approximation
fsCoeffs(m + k + 1) = (Ts/T0) * sum(x .* exp(-1j * m * 2*pi * n/N));

end
end

2

In this part of the lab report, I focus on manually deriving the Fourier se-
ries coefficients for two given signals and then verifying them using a MATLAB
function called FSAnalysis. The signals are:

• x1(t) = 8 cos(10πt) + 20 sin(6πt) − 11 cos(30πt)

• x2(t) = e−t, −1 < t < 1, periodic with T = 2 s

First, I show how to find at least three non-zero Fourier coefficients for each
signal by hand. Then, I present the MATLAB implementation that numerically
estimates the same coefficients. Finally, I verify the results via Parseval’s relation.

Signal 1: x1(t) = 8 cos(10πt) + 20 sin(6πt) − 11 cos(30πt)
Fundamental Period

Each term can be expressed in the form cos(2πft) or sin(2πft). Observing
the arguments:

cos(10πt) = cos
(
2π · 5 t

)
, sin(6πt) = sin

(
2π · 3 t

)
, cos(30πt) = cos

(
2π · 15 t

)
.

The frequencies involved are 3, 5, and 15 Hz. A convenient choice for the funda-
mental period is T0 = 1 s, since

3 = 3 × 1, 5 = 5 × 1, 15 = 15 × 1.

Hence, the fundamental frequency is ω0 = 2π rad/s.

Fourier Series Coefficients

A general real sinusoidal term like A cos(2πkt) corresponds to non-zero coef-
ficients ak and a−k in the complex exponential form. Specifically,

A cos(2πkt) = A

2 ej2πkt + A

2 e−j2πkt.

Similarly,
B sin(2πkt) = B

2j

(
ej2πkt − e−j2πkt

)
.

For x1(t), the relevant harmonics are k = 3, 5, 15. Let us list the non-zero
coefficients:

• 8 cos(10πt) = 8 cos(2π · 5t)
Here, a5 = 8

2 = 4 and a−5 = 4.

• 20 sin(6πt) = 20 sin(2π · 3t)
For the sine term,

a3 = 20
2j

= −10 j, a−3 = 10 j.

• −11 cos(30πt) = −11 cos(2π · 15t)
This leads to

a15 = −11
2 = −5.5, a−15 = −5.5.

All other coefficients ak are zero. Hence, we have at least three distinct non-
zero pairs: (k = ±3), (k = ±5), (k = ±15).

3

Signal 2: x2(t) = e−t, −1 < t < 1, T = 2 s
Fundamental Period

The given signal repeats every T = 2 seconds, so the fundamental period is
T0 = 2. The fundamental frequency is

ω0 = 2π

T0
= π rad/s.

Hence, the k-th harmonic term will be e−jkπt.

Fourier Series Coefficients

By definition,

ak = 1
T0

∫ 1

−1
e−t e−jkπt dt = 1

2

∫ 1

−1
e−[1+jkπ] t dt.

Let α = 1 + jkπ. Then

ak = 1
2

∫ 1

−1
e−α t dt = 1

2

[1
−α

e−αt
]t=1

t=−1
= 1

−2α

(
e−α·1 − e−α·(−1)

)
.

Rearranging signs,

ak = 1
2α

(
eα − e−α

)
= 1

α
· sinh(α).

Therefore,

ak = sinh(1 + jkπ)
1 + jkπ

.

Each integer k gives a (generally) non-zero coefficient. For example:

a0 = sinh(1), a1 = sinh(1 + jπ)
1 + jπ

, a−1 = sinh(1 − jπ)
1 − jπ

,

and so on. Thus, we have infinitely many non-zero coefficients, but at least three
distinct ones are clearly { a0, a1, a−1}.

4

% Parameters for x1(t)
Ts = 0.001; % Sampling period
T0 = 1; % Period of x1(t)
t = 0:Ts:T0-Ts; % Time vector for one period
k = 30; % Number of coefficients (from -30 to 30)

% Define the signal x1(t)
x1 = 8*cos(10*pi*t) + 20*sin(6*pi*t) - 11*cos(30*pi*t);

% Compute Fourier coefficients using FSAnalysis
a1 = FSAnalysis(x1, k, Ts);

% Plot the real and imaginary parts
figure;
subplot(2,1,1);
stem(-k:k, real(a1), 'filled');
title('x1(t) Fourier Coefficients - Real Part');
xlabel('Harmonic (k)');
ylabel('Re\{a_k\}');

subplot(2,1,2);
stem(-k:k, imag(a1), 'filled');
title('x1(t) Fourier Coefficients - Imaginary Part');
xlabel('Harmonic (k)');
ylabel('Im\{a_k\}');

5

Figure 1: Part 1.1

x1(t) Results

• The derivation shows that x1(t) has three main harmonic components.

• Only the coefficients at k = ±3, ±5, and ±15 are non-zero.

• MATLAB simulations confirm these results with clear stem plots.

6

MATLAB Code for x2(t):

% Parameters for x2(t)
Ts = 0.001; % Sampling period
T0 = 2; % Period for x2(t)
t = -1:Ts:1-Ts; % Time vector for one period
k = 30; % Number of coefficients (from -30 to 30)

% Define the signal x2(t)
x2 = exp(-t);

% Compute Fourier coefficients using FSAnalysis
a2 = FSAnalysis(x2, k, Ts);

% Plot the real and imaginary parts
figure;
subplot(2,1,1);
stem(-k:k, real(a2), 'filled');
title('x2(t) Fourier Coefficients - Real Part');
xlabel('Harmonic (k)');
ylabel('Re\{a_k\}');

subplot(2,1,2);
stem(-k:k, imag(a2), 'filled');
title('x2(t) Fourier Coefficients - Imaginary Part');
xlabel('Harmonic (k)');
ylabel('Im\{a_k\}');

7

Figure 2: Part 1.2

x2(t) Results

• The derivation for x2(t) uses an integral of the exponential function.

• The Fourier coefficients are expressed in terms of the hyperbolic sine func-
tion.

• MATLAB results match the derivation and display accurate coefficient
plots.

8

Parseval’s Relation Verification

We have the signal:

x1(t) = 8 cos(10πt) + 20 sin(6πt) − 11 cos(30πt).

In Part 1, we found the fundamental period T0 = 1 s. Parseval’s theorem for a
continuous-time periodic signal states:

1
T0

∫ T0

0

∣∣∣x(t)
∣∣∣2 dt =

∞∑
k=−∞

∣∣∣ak

∣∣∣2,
where ak are the Fourier series coefficients.

Time-Domain Energy
Since T0 = 1, we compute:

1
1

∫ 1

0

(
8 cos(10πt) + 20 sin(6πt) − 11 cos(30πt)

)2
dt.

We can use the orthogonality of sines and cosines to avoid direct expansion of
cross terms. Over one period, cross terms of different harmonics average to zero.
Therefore, we only sum the energies of each individual term:∫ 1

0

[
8 cos(10πt)

]2
dt +

∫ 1

0

[
20 sin(6πt)

]2
dt +

∫ 1

0

[
−11 cos(30πt)

]2
dt.

For a term A cos(2πkt) or A sin(2πkt) with period 1 s, we know:∫ 1

0

[
A cos(2πkt)

]2
dt = A2

2 ,
∫ 1

0

[
A sin(2πkt)

]2
dt = A2

2 .

Hence, the time-domain energy is:∫ 1

0

[
8 cos(10πt)

]2
dt = 82

2 = 32,

∫ 1

0

[
20 sin(6πt)

]2
dt = 202

2 = 200,∫ 1

0

[
−11 cos(30πt)

]2
dt = 112

2 = 60.5.

Summing these:
Etime = 32 + 200 + 60.5 = 292.5.

Frequency-Domain Energy
From the earlier derivation of Fourier coefficients:

x1(t) = 8 cos(10πt) + 20 sin(6πt) − 11 cos(30πt),

we identified the non-zero coefficients as follows:

k = ±5 : a±5 = 8
2 = 4,

k = ±3 : a3 = −10j, a−3 = 10j,

k = ±15 : a±15 = −11
2 = −5.5.

9

We now calculate the sum of their squared magnitudes. For each pair (+k, −k),
we add up |ak|2 + |a−k|2:

For k = 5 : |4|2 + |4|2 = 16 + 16 = 32,

For k = 3 : | − 10j|2 + |10j|2 = 100 + 100 = 200,

For k = 15 : | − 5.5|2 + | − 5.5|2 = 30.25 + 30.25 = 60.5.

Summing these gives:

Efreq = 32 + 200 + 60.5 = 292.5.

Hence, we see:
Etime = Efreq = 292.5,

which confirms Parseval’s theorem for x1(t).

Computational Verification in MATLAB
In MATLAB, we can check Parseval’s relation using discrete samples of x1(t)

and the Fourier coefficients computed by our FSAnalysis function. For a sam-
pling period Ts, the discrete approximation states:

Ts

T0

N−1∑
n=0

∣∣∣x1[n]
∣∣∣2 ≈

K∑
k=−K

∣∣∣ak

∣∣∣2.
MATLAB Code for Parseval’s Check:
This code is implemented with a MATLAB code for x1(t)

% Parseval's relation for x1(t)
E_time = Ts * sum(abs(x1).^2); % Energy from time domain
E_freq = sum(abs(a1).^2); % Energy from Fourier coefficients

fprintf('Time domain energy = %f\n', E_time);
fprintf('Frequency domain energy = %f\n', E_freq);

Energy Calcualtions:

Time domain energy = 292.500000
Frequency domain energy = 292.500000

Summary of Part 1
In this part of the lab report, I implemented the Fourier series analysis using a

discrete approximation of the integral. The function FSAnalysis was developed
to compute Fourier coefficients for a given signal. I tested the function on two
different signals (x1(t) and x2(t)) and visualized the real and imaginary parts
of the coefficients using stem plots. Additionally, I verified the accuracy of the
computation using Parseval’s relation.

The results showed that the numerical method accurately approximates the
theoretical Fourier coefficients. This approach demonstrates how time-domain
operations can be analyzed in the frequency domain, which is essential for under-
standing signal processing in both theory and practice.

10

2 Part 2

Introduction
In this part of the lab report, we analyze a periodic signal given by

x3(t) = r(t) − r(t − 3) − 3u(t − 3),

where r(t) = t · u(t) is the ramp function and u(t) is the unit step function. The
signal is periodic with a period T = 4 seconds. We compute its Fourier series
coefficients using a custom MATLAB function called FSAnalysis. Then, we
apply several time-domain operations on x3(t) and recalculate the Fourier series
coefficients to see how each operation changes the spectrum.

Methodology
The MATLAB code follows these steps:

1. Signal Definition:
We define the signal x3(t) over one period with a sampling period Ts = 0.001
seconds. Since the period is T = 4 s, we have N = T/Ts samples.

2. Fourier Series Coefficients:
Using the function FSAnalysis, we calculate the Fourier series coefficients
for x3(t) for indices from −k to k (here k = 30). The function approximates
the integral with a summation over the samples.

3. Time-Domain Operations:
We then apply different operations on x3(t) and compute the new Fourier
coefficients:

• (a) Time Reversal: z1(t) = x3(−t). For a periodic signal, this is
implemented by flipping the signal.

• (b) Differentiation: z2(t) = dx3(t)
dt

. We use MATLAB’s gradient
function to approximate the derivative.

• (c) Time Shifting: z3(t) = x3(t + 2). A circular shift is used to
simulate the time shift.

• (d) Even Extension: z4(t) = x3(t)+x3(−t)
2 . This makes the signal even

and mainly affects the phase (imaginary part) of the coefficients.
• (e) Squaring: z5(t) = [x3(t)]2. Squaring causes a convolution of the

Fourier coefficients, spreading the spectral content.

4. Visualization:
For each signal (the original x3(t) and the modified versions), the real and
imaginary parts of the Fourier coefficients are plotted using MATLAB’s
stem function in two subplots.

11

MATLAB Code
Below is the MATLAB code for Part 2. Save this code as lab4_part2.m and

run it in MATLAB.

%% Parameters
Ts = 0.001; % Sampling period (s)
T = 4; % Period (s)
N = T/Ts; % Number of samples in one period
t = 0:Ts:T-Ts; % Time vector for one period
k = 30; % Number of Fourier coefficients on each side
kVec = -k:k; % Harmonic index vector

%% Define x(t)
% x(t) = r(t) r(t3) 3u(t3)
% r(t) = t*u(t). For 0 <= t < 4:
% When t < 3, x(t) = t. When t >= 3, x(t) = 0.
x3 = t .* (t < 3);

%% Compute Fourier Series Coefficients for x(t)
X3_coeff = FSAnalysis(x3, k, Ts);

figure;
subplot(2,1,1);
stem(kVec, real(X3_coeff));
xlabel('Harmonic index k');
ylabel('Real Part');
title('x(t) Fourier Coefficients - Real Part');
grid on;

subplot(2,1,2);
stem(kVec, imag(X3_coeff));
xlabel('Harmonic index k');
ylabel('Imaginary Part');
title('x(t) Fourier Coefficients - Imaginary Part');
grid on;

%% (a) Time Reversal: z(t) = x(-t)
z1 = flip(x3); % Flip the vector to reverse time
Z1_coeff = FSAnalysis(z1, k, Ts);

figure;
subplot(2,1,1);
stem(kVec, real(Z1_coeff));
xlabel('Harmonic index k');
ylabel('Real Part');
title('z(t) = x(-t) Fourier Coefficients - Real Part');
grid on;

subplot(2,1,2);
stem(kVec, imag(Z1_coeff));
xlabel('Harmonic index k');
ylabel('Imaginary Part');
title('z(t) = x(-t) Fourier Coefficients - Imaginary Part');
grid on;

12

%% (b) Differentiation: z(t) = dx(t)/dt
z2 = gradient(x3, Ts); % Numerical derivative
Z2_coeff = FSAnalysis(z2, k, Ts);

figure;
subplot(2,1,1);
stem(kVec, real(Z2_coeff));
xlabel('Harmonic index k');
ylabel('Real Part');
title('z(t) = dx(t)/dt Fourier Coefficients - Real Part');
grid on;

subplot(2,1,2);
stem(kVec, imag(Z2_coeff));
xlabel('Harmonic index k');
ylabel('Imaginary Part');
title('z(t) = dx(t)/dt Fourier Coefficients - Imaginary Part');
grid on;

%% (c) Time Shifting: z(t) = x(t+2)
shift_samples = round(2/Ts);
z3 = circshift(x3, -shift_samples);
Z3_coeff = FSAnalysis(z3, k, Ts);

figure;
subplot(2,1,1);
stem(kVec, real(Z3_coeff));
xlabel('Harmonic index k');
ylabel('Real Part');
title('z(t) = x(t+2) Fourier Coefficients - Real Part');
grid on;

subplot(2,1,2);
stem(kVec, imag(Z3_coeff));
xlabel('Harmonic index k');
ylabel('Imaginary Part');
title('z(t) = x(t+2) Fourier Coefficients - Imaginary Part');
grid on;

%% (d) Even Extension: z(t) = Ev{x(t)} = (x(t) + x(-t)) / 2
z4 = (x3 + flip(x3)) / 2;
Z4_coeff = FSAnalysis(z4, k, Ts);

figure;
subplot(2,1,1);
stem(kVec, real(Z4_coeff));
xlabel('Harmonic index k');
ylabel('Real Part');
title('z(t) = Ev{x(t)} Fourier Coefficients - Real Part');
ylim([-1 1.5]);
grid on;

subplot(2,1,2);
stem(kVec, imag(Z4_coeff));
xlabel('Harmonic index k');
ylabel('Imaginary Part');
title('z(t) = Ev{x(t)} Fourier Coefficients - Imaginary Part');
ylim([-1 1.5]);
grid on;

13

%% (e) Squaring: z(t) = [x(t)]^2
z5 = x3.^2;
Z5_coeff = FSAnalysis(z5, k, Ts);

figure;
subplot(2,1,1);
stem(kVec, real(Z5_coeff));
xlabel('Harmonic index k');
ylabel('Real Part');
title('z(t) = [x(t)]^2 Fourier Coefficients - Real Part');
grid on;

subplot(2,1,2);
stem(kVec, imag(Z5_coeff));
xlabel('Harmonic index k');
ylabel('Imaginary Part');
title('z(t) = [x(t)]^2 Fourier Coefficients - Imaginary Part');
grid on;

%% Local Function: FSAnalysis
function fsCoeffs = FSAnalysis(x, k, Ts)

% x: One period of the sampled signal
% k: Number of coefficients on the positive side (total coefficients: 2k+1)
% Ts: Sampling period
N = length(x);
T = N * Ts;
omega0 = 2*pi/T;
kVec = -k:k;
fsCoeffs = zeros(1, length(kVec));
t = (0:N-1)*Ts;
for idx = 1:length(kVec)

fsCoeffs(idx) = (1/T) * sum(x .* exp(-1i * kVec(idx) * omega0 * t)) * Ts;
end

end

14

Original x3(t) Coefficients

• The coefficients show how the signal’s energy is spread across different har-
monics.

• They have both real and imaginary parts because the signal is not purely
symmetric.

• The shape of the graph reflects the ramp structure and the truncation at t
= 3.

Figure 3: Part 2.1

15

Time Reversal (z1(t) = x3(−t)) Coefficients

• The coefficients of the time-reversed signal are the complex conjugate of
the original ones.

• This means the magnitude stays the same while the phase is flipped.

• The graph looks similar to the original, but with mirrored phase informa-
tion.

Figure 4: Part 2.2

16

Differentiation (z2(t) = dx3(t)/dt) Coefficients

• Differentiating the signal multiplies the Fourier coefficients by j·k·w, in-
creasing high-frequency components.

• This results in larger amplitudes for higher harmonics and a dominant imag-
inary part.

• The coefficient graph shows a steeper increase for high frequencies, as ex-
pected from differentiation.

Figure 5: Part 2.3

17

Time Shifting (z3(t) = x3(t + 2)) Coefficients:

• A time shift introduces a linear phase change in the Fourier coefficients.

• The magnitude of the coefficients remains almost the same as the original.

• The graph displays a constant phase slope, which is typical for a time-shifted
signal.

Figure 6: Part 2.4

18

Even Extension (z4(t) = (x3(t) + x3(−t))/2) Coefficients:

• Making the signal even removes most of the imaginary parts of the coeffi-
cients.

• The coefficients become nearly purely real because even functions have real
Fourier coefficients.

• The magnitude graph is slightly altered due to the averaging, but it still
shows the overall harmonic content.

Figure 7: Part 2.5

19

Squaring (z5(t) = [x3(t)]2) Coefficients:

• Squaring the signal causes a convolution of the original Fourier coefficients.

• This spreads the energy over a wider range of harmonics and changes the
amplitude distribution.

• The graph shows many more non-zero coefficients, reflecting the broader
frequency content introduced by squaring.

Figure 8: Part 2.6

20

Summary of Part 2
• We defined a periodic signal x3(t) = r(t) − r(t − 3) − 3u(t − 3) with period

T = 4 s.

• The Fourier series coefficients were computed using the FSAnalysis func-
tion.

• Different time-domain operations were applied:

– Time Reversal resulted in a spectrum that resembles the complex
conjugate of the original.

– Differentiation multiplied the coefficients by j k ω0, emphasizing higher
harmonics.

– Time Shifting introduced a phase shift in the coefficients.
– Even Extension made the signal symmetric, which reduced the imag-

inary parts.
– Squaring broadened the spectrum due to convolution of coefficients.

• All results were visualized with stem plots showing the real and imaginary
parts separately.

21

3 Part 3

Introduction
In this part of the lab report, we analyze a second-order physical system. The

system is described by the differential equation:

M
d2y(t)

dt2 + c
dy(t)

dt
+ κy(t) = f(t)

where:

• y(t) is the displacement (output),

• f(t) is the applied force (input),

• M is the mass,

• c is the damping coefficient, and

• κ is the stiffness of the spring.

The goal is to express the system using Fourier series coefficients and then im-
plement a simulation in MATLAB using a backward difference method.

Theoretical Analysis

3.1 Fourier Series Representation
We can represent the input and output signals in their Fourier series forms:

f(t) =
∞∑

k=−∞
ak ejkω0t and y(t) =

∞∑
k=−∞

bk ejkω0t,

where ak and bk are the Fourier coefficients for f(t) and y(t) respectively, and ω0
is the fundamental frequency.

When we take derivatives, the Fourier coefficients change as follows:

• First derivative: dy(t)
dt

→ jkω0 bk.

• Second derivative: d2y(t)
dt2 → −(kω0)2 bk.

Substitute these into the differential equation:

M
[
−(kω0)2 bk

]
+ c [jkω0 bk] + κ bk = ak.

This simplifies to:
bk

[
κ − M(kω0)2 + jckω0

]
= ak.

Thus, the relationship between the Fourier coefficients is:

bk = ak

κ − M(kω0)2 + jckω0
.

In other words, the system’s frequency response H(jkω0) is given by:

H(jkω0) = bk

ak

= 1
κ − M(kω0)2 + jckω0

.

22

3.2 Discretization Using Backward Difference
For the simulation, we use the following parameters:

M = 100, c = 0.1, κ = 0.1.

We assume the force f(t) is given by the signal x3(t) defined as:

x3(t) = r(t) − r(t − 3) − 3u(t − 3),

where r(t) = t is a ramp function and u(t) is the unit step function.
To simulate the system in discrete time, we approximate the derivatives with

the backward difference method:

y′(t) ≈ y[n] − y[n − 1]
Ts

,

y′′(t) ≈ y[n] − 2y[n − 1] + y[n − 2]
T 2

s

.

Substituting these into the differential equation, we have:

M(y[n] − 2y[n − 1] + y[n − 2])
T 2

s

+ c(y[n] − y[n − 1])
Ts

+ κ y[n] = x3[n].

Solving for y[n]:

y[n] = T 2
s · x3[n] + (2M + c Ts) y[n − 1] − M y[n − 2]

M + c Ts + κ T 2
s

.

23

MATLAB Implementation
Below is the MATLAB code that implements the above derivation. The code

creates the x3(t) signal, simulates the system using the derived backward differ-
ence equation, and computes the Fourier series coefficients for both x3(t) and y(t)
using the FSAnalysis function.

Ts = 0.001;
T = 4;
t = 0:Ts:T-Ts;

x3 = zeros(size(t));
idx1 = t < 3;
x3(idx1) = t(idx1);
idx2 = t >= 3;
x3(idx2) = t(idx2) - (t(idx2)-3) - 3;

M = 100;
c = 0.1;
kappa = 0.1;
denom = M + c + kappa;

% y(n) = [x3(n) + (2*M + c)*y(n-1) - M*y(n-2)] / (M + c + kappa)
y = zeros(size(t));
y(1) = 0; y(2) = 0;
for n = 3:length(t)

y(n) = (x3(n) + (2*M + c)*y(n-1) - M*y(n-2)) / denom;
end

figure;
subplot(2,1,1);
plot(t, x3, 'LineWidth',1.5);
title('x_3[n] (Giriş Sinyali)');
xlabel('t (s)'); ylabel('x_3[n]');
grid on;

subplot(2,1,2);
plot(t, y, 'LineWidth',1.5);
title('y[n] (Sistem Çıkışı)');
xlabel('t (s)'); ylabel('y[n]');
grid on;

k = 30;
a3 = FSAnalysis(x3, k, Ts);
b = FSAnalysis(y, k, Ts);

figure;
subplot(2,2,1);
stem(-k:k, real(a3), 'filled');
title('x_3[n] Fourier Coefficients - Real');
xlabel('Harmonic (k)'); ylabel('Re\{a_k\}');
grid on;

24

subplot(2,2,2);
stem(-k:k, imag(a3), 'filled');
title('x_3[n] Fourier Coefficients - Imag');
xlabel('Harmonic (k)'); ylabel('Im\{a_k\}');
grid on;

subplot(2,2,3);
stem(-k:k, real(b), 'filled');
title('y[n] Fourier Coefficients - Real');
xlabel('Harmonic (k)'); ylabel('Re\{b_k\}');
grid on;

subplot(2,2,4);
stem(-k:k, imag(b), 'filled');
title('y[n] Fourier Coefficients - Imag');
xlabel('Harmonic (k)'); ylabel('Im\{b_k\}');
grid on;

function fsCoeffs = FSAnalysis(x, k, Ts)
% FSAnalysis: Compute Fourier series coefficients for a periodic signal.
% Inputs:
% x - One period of the sampled continuous-time signal (vector)
% k - Number of coefficients on each side (from -k to k)
% Ts - Sampling period
%
% Output:
% fsCoeffs - Fourier series coefficients (vector of length 2*k+1)
N = length(x); % Number of samples in one period
T0 = N * Ts; % Signal period
fsCoeffs = zeros(2*k+1, 1); % Initialize coefficients vector
n = 0:N-1; % Sample indices

for m = -k:k
% Compute coefficient a_m using the discrete sum approximation
fsCoeffs(m + k + 1) = (Ts/T0) * sum(x .* exp(-1j * m * 2*pi * n/N));
end

end

25

Figure 9: Part 3.1

26

Figure 10: Part 3.2

27

Figure 11: Part 3.3

28

Summary of Part 3
In this part, we analyzed a second-order system by:

• Expressing the differential equation in the Fourier series domain to find the
relationship:

bk = ak

κ − M(kω0)2 + jckω0
,

which defines the system’s frequency response.

• Discretizing the system using the backward difference method. This allowed
us to obtain the recursive equation:

y[n] = T 2
s · x3[n] + (2M + c Ts) y[n − 1] − M y[n − 2]

M + c Ts + κ T 2
s

.

• Implementing the simulation in MATLAB, where we generated the input
signal x3(t), computed the output y(t), and compared the Fourier series
coefficients of both signals.

This detailed explanation and MATLAB code help us understand how a second-
order physical system affects the Fourier series coefficients of an input signal.

General Conclusion
In this lab, I explored both the theoretical and practical aspects of Fourier se-

ries. I implemented the FSAnalysis function in MATLAB to compute Fourier co-
efficients of various periodic signals. Then, I analyzed how different time-domain
operations—such as time reversal, shifting, differentiation, and squaring—affect
the frequency-domain representation. Finally, I examined how a second-order
physical system alters the spectral content of an input signal using both analyti-
cal derivation and numerical simulation. Overall, this lab helped me understand
how time-domain and frequency-domain analyses are interconnected in signal
processing.

29

	Part 1
	Part 2
	Part 3
	Fourier Series Representation
	Discretization Using Backward Difference

