Ahmet Faruk Çolak 22102104 2024-2025 Fall

EE-202 LAB 4 FINAL REPORT

1-Introduction

This lab explores the frequency response of RC and RL circuits. Key tasks include deriving transfer functions, analyzing responses using MATLAB, and validating them through LTSpice simulations. The study extends to higher-order filters by cascading RC stages and comparing theoretical, simulated, and measured results. Emphasizing gain and corner frequencies, the lab reinforces fundamental concepts in filter and circuit analysis within design constraints.

2-Analysis & Preliminary Work

A- First Order RC Circuit

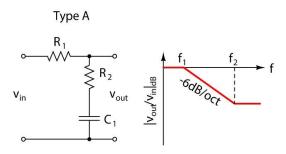


Figure.1: First Order RC Circuit

Given Values:

ID: 22102104

 $f_1 = 5 \ kHz, \quad f_2 = 120 \ kHz$

Mathematical Derivations:

$$|H(w)| = \sqrt{\frac{1 + (R_2 w C_1)^2}{1 + (w C_1 (R_1 + R_2))^2}}$$

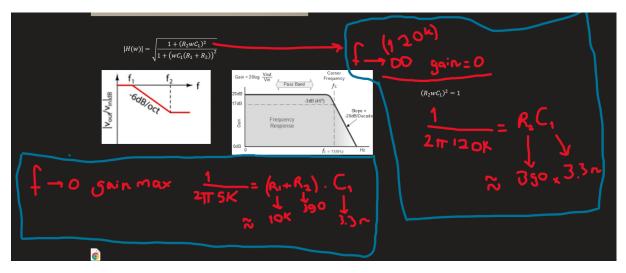


Figure.2: Mathematical Derivations

There are many problems in Preliminary Report so, new derivations were implemented.

Components were selected as,

 $C_1 = 3.3$ nF $R_1 = 10k R_2 = 390$

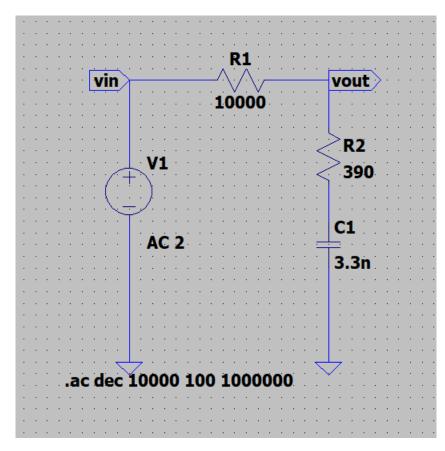


Figure.3: LTspice schematics for RC circuit.

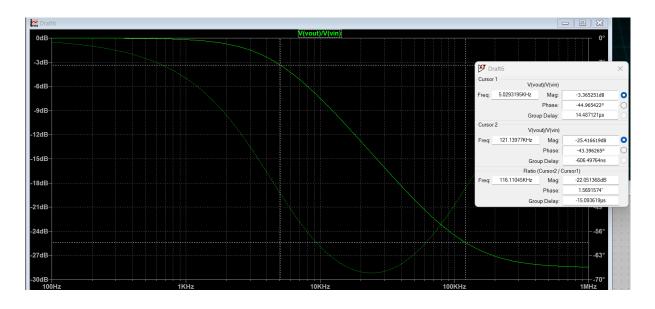


Figure.4: LTspice simulation for RC circuit

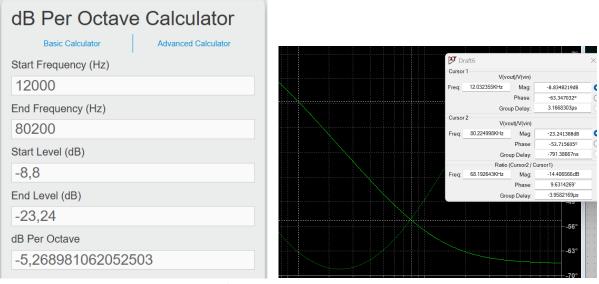
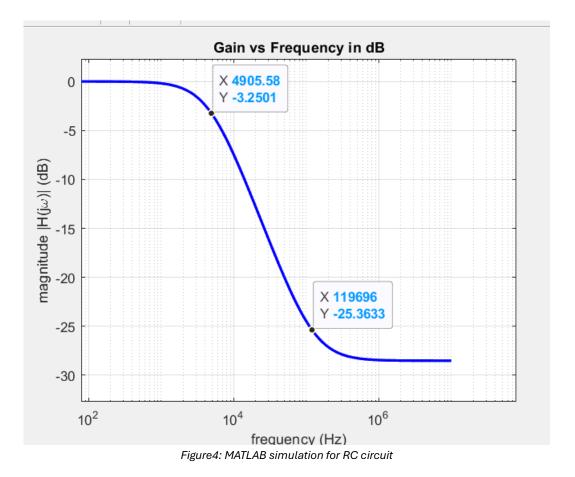



Figure.5: Appx. 6dB stop band


```
f = logspace(1, 7, 1000); % from 10 Hz to 10^7 Hz
omega = 2 * pi * f;
% Transfer function components
numerator = sqrt(1 + (R2 * omega * C1).^2);
denominator = sqrt(1 + (omega * C1 * (R1 + R2)).^2);
H_magnitude = numerator ./ denominator;
% Convert transfer function to dB scale
H_dB = 20 * log10(H_magnitude);
% Plot
figure;
semilogx(f, H_dB, 'b', 'LineWidth', 2); % Blue line for your transfer function
grid on;
xlabel('frequency (Hz)');
ylabel('magnitude |H(j\omega)| (dB)');
title('Gain vs Frequency in dB');
```

```
Figure.5: MATLAB code for LPF
```

B- Adding another RC circuit

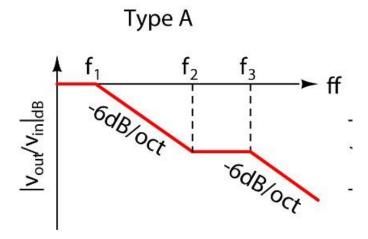


Figure.6: Final RC circuit

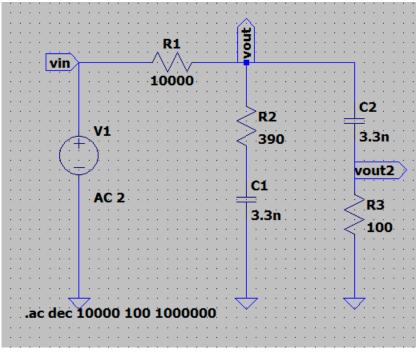
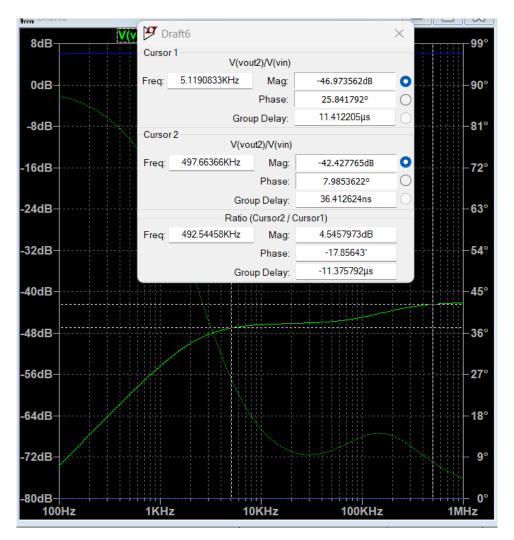
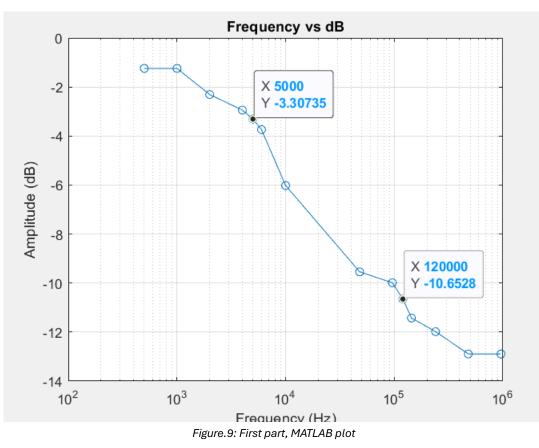


Figure. 7: Final RC circuit, LTspice schematics




Figure.8: Final RC circuit, LTspice simulation

5-Hardware Implementation and Results

Component Selection: The component values for the circuit were determined using a Python program. The code was manually adjusted iteratively to refine the values until the desired conditions were met. The final component values obtained from this process functioned successfully in the circuit.

Further Optimization: The second stage of the experiment involved a more complex approach. In addition to analyzing mathematical calculations and Python-generated results, a trial-and-error method was employed to select the most suitable values. This iterative process helped finalize the component values, which were then implemented in the circuit.

Results

A- First Order RC Circuit

There is -5.7dB/octave slope.

	Frequency (Hz)	Vin	V_ratio	dB	8	48000	4000	0.333333333333333333	-9.54242509439325
1	500	10400	0.86666666666666 7	-1.24295813497688 92	9	96000	3800	3 0.3166666666666666 65	-9.98795298861629 3
2	1000	10400	0.8666666666666666666666666666666666666	-1.24295813497688 92				60	3
з	2000	9200	0.766666666666666	-2.30786837404139 03	10	120000	3520	0.2933333333333333 33	-10.6527716513898 77
				-2.94430262638904	11	144000	3220	0.2683333333333333 3	-11.4265074870358 8
4	4000	8550	0.7125	37	12	240000	3020	0.2516666666666666	-11.9834860618094
5	5000	8200	0.68333333333333333 3	-3.30734787327816 27	12	240000	5020	65	85
6	6000	7800	0.65	-3.74173286714288 84		480000	2720	0.2266666666666666666666666666666666666	-12.8922468402685 22
7	10000	6000	0.5	-6.02059991327962 4	14	960000	2720	0.2266666666666666666666666666666666666	-12.8922468402685 22

Figure.10: First part Vout values

```
freq = [500, 1000, 2000, 4000, 5000, 6000, 10000, 48000, 96000, 120000, 144000, 240000, 480000,
960000];
Vin = [10400, 10400, 9200, 8550, 8200, 7800, 6000, 4000, 3800, 3520, 3220, 3020, 2720, 2720];
V_ratio = Vin / 12000;
dB = 20 * log10(V_ratio);
figure;
semilogx(freq, dB, '-o');
xlabel('Frequency (Hz)');
ylabel('Amplitude (dB)');
title('Frequency vs dB');
grid on;
```

Figure.11: MATLAB code for first part

B- Adding another RC circuit

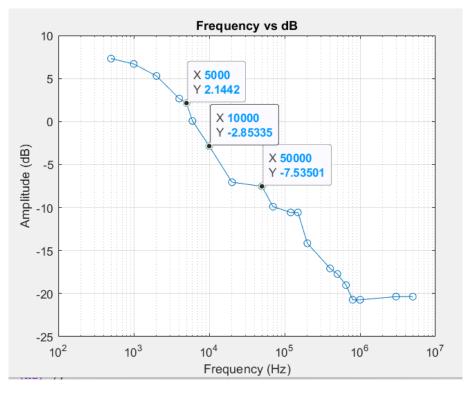


Figure. 12: Second part, MATLAB plot

	Frequency (Hz)	Vin	Vout	dB	11	120000	5000	1480	-10.5741657788212
1	500	5000	11600	7.309759697817992					29
2	1000	5000	10800	6.689075023018618	12	150000	5000	1480	-10.5741657788212 29
3	2000	5000	9200	5.296356460190729		200000	5000	980	-14.1548785728704 8
4	4000	5000	6800	2.670778167404350 7	14	400000	5000	700	- -17.0774392864352 4
5	5000	5000	6400	2.144199392957367 5	15	500000	5000	650	-17.7211329538632
6	6000	5000	5040	0.069210642190129 79		50000	5000	0.50	65
					16	650000	5000	560	-19.0156395465963 7
7	10000	5000	3600	-2.85335007137463 14	17	800000	5000	460	-20.7242434530888 96
8	20000	5000	2220	-7.05234059770760 35	18	1000000	5000	460	-20.7242434530888 96
9	50000	5000	2100	-7.53501419204199 15					
9					19	3000000	5000	480	-20.3545753392086 3
10	70000	5000	1600	-9.89700043360188	20	500000	5000	480	-20.3545753392086 3

Figure.13: Second part, Vout values

```
freq = [500, 1000, 2000, 4000, 5000, 6000, 10000, 20000, 50000, 70000, 120000, 150000, 200000,
400000, 500000, 650000, 800000, 1000000, 3000000, 5000000];
Vin = [11600, 10800, 9200, 6800, 6400, 5040, 3600, 2220, 2100, 1600, 1480, 1480, 980, 700, 650,
560, 460, 460, 480, 480];
V_ratio = Vin / 5000;
dB = 20 * log10(V_ratio);
figure;
semilogx(freq, dB, '-o');
xlabel('Frequency (Hz)');
ylabel('Amplitude (dB)');
title('Frequency vs dB');
grid on;
```

Figure.14: MATLAB code for second part

6-Conclusion

Conclusion

The experiment successfully met its primary objective of designing and analyzing filters with specific slope characteristics. In the first phase of the experiment, the results were highly positive. The achieved slope of 5.7 dB/octave aligns closely with the theoretical expectations, confirming the validity of the design and component choices.

In the second phase, while the circuit demonstrated overall functionality, certain challenges were observed. These issues, likely due to experimental limitations or minor inaccuracies in setup, suggest that additional trials and refinements could further enhance performance. Despite these hurdles, the circuit operated within acceptable parameters, providing valuable insights for future iterations.

Overall, the experiment highlights the importance of precise measurements and iterative testing to optimize filter performance, particularly in circuits requiring critical frequency-dependent characteristics.