
AHMET FARUK ÇOLAK-22102104

1 Purpose

The purpose of this lab is to design a VHDL code that generates arbitrary digital
waveforms. The waveforms can be chosen by the changed based on an input signal.
The code will use the Clocking Wizard IP to generate a precise clock signal at the
desired frequency.

2 Methodolgy

1. Design a VHDL code that generates the desired digital waveform. This code
can include logic statements to create various wave shapes, such as square
waves.

2. Use the Clocking Wizard IP to generate a clock signal with the appropriate
frequency. The desired waveform frequency will determine the clock frequency
needed.

3. Implement a testbench to simulate the code and verify that the waveform is
generated as expected. Use markers in the simulation window to measure the
time intervals and ensure they match the design specifications.

4. Simulate the code and capture the test bench results.
5. Synthesize the design and download it to BASYS3 board.
6. Connect the output signal to an oscilloscope and measure the actual

waveform generated by the circuit. Compare the measured waveform to the
simulated waveform to ensure they match.

3 Results

Figure-1: Test Bench Simulation Result

Unfortunately, I could not implement super-working test-bench code for 2 hours. Becasue of

this, there is a tiny problem with my test bench.

Figure-2: Oscilloscope Result

This is the oscilloscope result. There is not problem problem with it. The only problem

I encountered was on constriant file. Becasue of it I could not see any waveform on

oscilloscope. Then one of my friend (Kayra, thanks to him) found a constraint file on

github and I used that code for constraint file.

4 Conclusion

This lab demonstrates how to design and implement a VHDL code to generate
arbitrary digital waveforms. The Clocking Wizard IP ensures an accurate clock signal
for the desired waveform frequency. By using simulation and testing, I can verify that
the generated waveform meets the design requirements.

Appendix

5 Main Function
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

entity Arbitrary_Waveform_Generator is

 Port (

 clk : in STD_LOGIC; -- Clock input from Clocking Wizard IP

 reset : in STD_LOGIC; -- Reset input

 waveform_out : out STD_LOGIC -- Output waveform

);

end Arbitrary_Waveform_Generator;

architecture Behavioral of Arbitrary_Waveform_Generator is

 -- Define waveform parameters

 type period_array is array (0 to 9) of integer range 1 to 1000000000; -- Array to hold different

periods

 constant PERIODS : period_array := (10000000, 20000000, 30000000, 40000000, 50000000,

60000000, 70000000, 80000000, 90000000, 100000000); -- Periods in clock cycles

 constant HIGH_TIME : integer := 25000000; -- High time of the waveform (in clock cycles) - 25 ms

for 100MHz clock

 signal counter : unsigned(31 downto 0); -- Counter to keep track of time

 signal period_index : integer range 0 to 9 := 0; -- Index to cycle through periods

begin

 process(clk, reset)

 begin

 if reset = '1' then

 counter <= (others => '0');

 waveform_out <= '0';

 elsif rising_edge(clk) then

 if counter = PERIODS(period_index) - 1 then -- When counter reaches the end of the current

period

 counter <= (others => '0');

 waveform_out <= '1'; -- Set waveform high

 elsif counter = HIGH_TIME - 1 then -- When counter reaches the end of the high time

 waveform_out <= '0'; -- Set waveform low

 counter <= counter + 1; -- Increment counter

 else

 counter <= counter + 1; -- Increment counter

 end if;

 if counter = PERIODS(period_index) - 1 and period_index < 9 then -- Move to the next period

 period_index <= period_index + 1;

 elsif counter = PERIODS(period_index) - 1 and period_index = 9 then

 period_index <= 0; -- Wrap around to the first period

 end if;

 end if;

 end process;

end Behavioral;

6 Test Bench
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

entity Arbitrary_Waveform_Generator_TB is

end Arbitrary_Waveform_Generator_TB;

architecture Behavioral of Arbitrary_Waveform_Generator_TB is

 -- Constants

 constant CLK_PERIOD : time := 10 ns; -- Clock period (100 MHz)

 constant SIM_DURATION : time := 1000 ms; -- Simulation duration

 -- Signals

 signal clk_tb : std_logic := '0';

 signal reset_tb : std_logic := '0';

 signal waveform_out_tb : std_logic;

 signal period_index_tb : integer range 0 to 9 := 0;

begin

 -- Instantiate the DUT (Design Under Test)

 dut: entity work.Arbitrary_Waveform_Generator

 port map (

 clk => clk_tb,

 reset => reset_tb,

 waveform_out => waveform_out_tb

);

 -- Clock generation process

 clk_process: process

 begin

 while now < SIM_DURATION loop

 clk_tb <= not clk_tb; -- Toggle clock

 wait for CLK_PERIOD / 2;

 end loop;

 wait;

 end process;

 -- Reset process

 reset_process: process

 begin

 reset_tb <= '1';

 wait for CLK_PERIOD * 5; -- Hold reset for a brief period

 reset_tb <= '0';

 wait;

 end process;

 -- Monitor waveform process

 monitor_waveform: process

 begin

 wait until rising_edge(clk_tb); -- Wait for rising edge of clock

 wait for CLK_PERIOD * 5; -- Wait for stabilization

 for i in 1 to 100 loop

 wait until rising_edge(clk_tb);

 period_index_tb <= period_index_tb + 1;

 report "Waveform output at time " & integer'image(i * 10) & " ms: " &

std_logic'image(waveform_out_tb);

 end loop;

 wait;

 end process;

end Behavioral;

7 Constraint
Clock signal

set_property -dict { PACKAGE_PIN W5 IOSTANDARD LVCMOS33 } [get_ports { clk }];

create_clock -add -name sys_clk_pin -period 10.00 -waveform {0 5} [get_ports { clk }];

Reset button

set_property -dict { PACKAGE_PIN W19 IOSTANDARD LVCMOS33 } [get_ports { reset }];

Output waveform

set_property -dict { PACKAGE_PIN A14 IOSTANDARD LVCMOS33 } [get_ports { waveform_out }];

