Ahmet Faruk Çolak 22102104 EE-102 - 01 23-24 SPRING

LAB 4: Arithmetic Logic Unit (ALU)

A) Purpose

This project aimed to design a basic Arithmetic Logic Unit (ALU) using VHDL for implementation on the BASYS 3 FPGA board. The ALU performs various mathematical and logical operations on 3-bit unsigned integers.

B)Methodology and Design Specifications

- 1. Functionality Selection: Eight functionalities were chosen for the ALU: addition, subtraction, left shift, OR, AND, XNOR and 2 comparison operation.
- 2. Bit Width: The design utilizes 3-bit unsigned numbers for inputs A and B and provides an output.
- 3. Modular Design: The VHDL code is structured in a modular fashion. There are two main 3 bitted inputs A and B. There is also selection input. The top-level module manages user selections and outputs the results based on the chosen operation. Eight sub-modules handle specific functionalities:
 - Adder: Performs 3-bit unsigned addition.
 - Subtractor: Executes 3-bit subtraction.
 - Shifter.: Implements a left shifter for 3-bit values.
 - OR gate: Defines a 3-bit OR gate.
 - AND gate: Defines a 3-bit AND gate.
 - XNOR gate: Defines a 3-bit XNOR gate.
 - comparator (circular and left): Compares two 3-bit unsigned numbers.

MODE	3-Bit	FUNCTION
Adder	000	A+B
Subtractor	001	A-B
Comparator	010	A <b ,="" a="">B
Shift (Circular)	011	
Shit (Left)	100	
XNOR gate	101	A XNOR B
NAND gate	110	A NAND B
NOR gate	111	A NOR B

- 4. Testing and Verification: A test bench was created to verify the functionality of each operation. The waveform was recorded for analysis.
- 5. Bitstream Generation: A constraint file was generated, and the VHDL code was synthesized into a bitstream for FPGA implementation.
- Hardware Implementation: The bitstream was downloaded to the BASYS
 3 board for hardware testing using switches for input and LEDs for output visualization.

C)Results

Figure.1 Test Bench Simulation

Figure.2 RTL schematic

Figure.3 Adder

DIGILENT 1 XILIN INER BAS

Figure.4 Left Shifter

Figure.5 XOR Gate

D)Conclusion

This project successfully implemented a basic ALU with eight functionalities on the BASYS 3 board using VHDL. The design demonstrates a modular approach and showcases the use of various logic gates and arithmetic operations on 3-bit unsigned integers. The project highlights good practices for addressing design challenges like driver errors and conditional assignments in VHDL.