Ahmet Faruk Çolak 22102104

EE-102 - 01

23-24 SPRING

LAB 3: Combinational Logic Circuit

A) Purpose

The main goal of this lab is to demonstrate our theoretical circuit design in practice on a breadboard. There are several additional objectives:

- 1. Learning to read and work according to datasheets:
 - -Understanding how to use 74HC(T) 163 ICs in any mode (including count mode in this case)
- -Learning how to use HC08 (AND gate) and HC32 (OR gate) logic gates and how to connect them to other equipment
 - -Grasping the function of a counter
 - 2. Designing a logic circuit:
 - -Learning how to translate a theoretical function into a practical circuit
 - -Understanding basic gates (OR and AND gates)
 - -Developing circuit design skills

B)Methodology

1-First, we need a circuit design to implement on a breadboard. I obtained one from a friend since I encountered difficulties with my previous lab design. This wasn't an issue, as the lab manual allows for designing a new circuit. Following that, I constructed a truth table for the chosen circuit design.

t ₁	t ₂	pr	au	r_1	r ₂
0	0	0	1	0	0
0	0	1	1	0	0
0	1	0	0	0	1
0	1	1	0	0	1
1	0	0	0	1	0
1	0	1	0	1	0
1	1	0	0	0	1
1	1	1	0	1	0

2- Second, I studied the datasheet of the 74 HC(T) 163. This was a very important step, as almost every part of this lab involved using this IC. For example, I needed to use the count mode of the IC, and all the necessary information for operating it in this mode was found in the datasheet.

3-Then, I tested legs of the IC (74 HCT163) to determine if it works or not. The legs; Q_0 , Q_1 and Q_2 was working properly. According to truth table, I chose Q_0 to pr, Q_1 to t2 and Q_2 to t1.

4-

OPERATING MODE	INPUTS					OUTPUTS		
OPERATING MODE	MR	СР	CEP	CET	PE	D _n	Qn	тс
reset (clear)	I	1	X	X	X	X	L	L
parallel load	h h	↑	X X	X X	1	l h	L H	L (1)
count	h	1	h	h	h	X	count	(1)
hold (do nothing)	h h	X X	I X	X I	h h	X X	q _n q _n	(1) L

Using jumper cables, connect the MR, CEP, PE, CET, and V_{cc} pins to 5V. Connect the GND pin to ground. Some pins, like the D pins, are not needed for this mode. Connect the CP pin to the positive probe of the signal generator, which should output square waves, preferably between 1 and 3 Hz. Connect the negative probe of the signal generator to ground. Ignore any unused pins.

5. Based on the truth table and my circuit design, I simulated the circuit on a breadboard using jumpers. I used AND, OR, and NOT gates for the simulation. Connect all V_{cc} legs to the positive terminal of the power supply (5V) and all GND legs to the negative terminal.

-HC08-AND gate:

-HC32-OR gate:

-HC04-NOT GATE:

6- Finally, I added LEDs and resistors (560 Ω) to show my circuit is working according to my truth table.

C)Results

Output-R1 results (matches with its truth table values):

Output-R2 results (matches with its truth table values):

Output-Au results (matches with its truth table values):

D)Conclusion

The goal of this lab is setting a logic circuit on the breadboard and simulate the truth table of the logic design and verify the results as a lighting LEDs. I could use my previous design but I could not. Studying datasheets was probably most important part. Moreover, datasheets are very helpful sources to design any circut.

However, there were many problems. For example, there are 4-5 ICs in the lab (74HCT163) and just one of them was working. There were also limited AND and OR gates.

In conclusion,

I learned

- -reading and understanding datasheets,
- -implementing therotical circuit design into practical
- -AND, OR, NOT gates