Ahmet Faruk Çolak 22102104 EE-102 - 01 **23-24 SPRING** ## **LAB 3: Combinational Logic Circuit** ### A) Purpose The main goal of this lab is to demonstrate our theoretical circuit design in practice on a breadboard. There are several additional objectives: - 1. Learning to read and work according to datasheets: - -Understanding how to use 74HC(T) 163 ICs in any mode (including count mode in this case) - -Learning how to use HC08 (AND gate) and HC32 (OR gate) logic gates and how to connect them to other equipment - -Grasping the function of a counter - 2. Designing a logic circuit: - -Learning how to translate a theoretical function into a practical circuit - -Understanding basic gates (OR and AND gates) - -Developing circuit design skills ## **B)Methodology** 1-First, we need a circuit design to implement on a breadboard. I obtained one from a friend since I encountered difficulties with my previous lab design. This wasn't an issue, as the lab manual allows for designing a new circuit. Following that, I constructed a truth table for the chosen circuit design. | t ₁ | t ₂ | pr | au | r_1 | r ₂ | |----------------|----------------|----|----|-------|----------------| | 0 | 0 | 0 | 1 | 0 | 0 | | 0 | 0 | 1 | 1 | 0 | 0 | | 0 | 1 | 0 | 0 | 0 | 1 | | 0 | 1 | 1 | 0 | 0 | 1 | | 1 | 0 | 0 | 0 | 1 | 0 | | 1 | 0 | 1 | 0 | 1 | 0 | | 1 | 1 | 0 | 0 | 0 | 1 | | 1 | 1 | 1 | 0 | 1 | 0 | 2- Second, I studied the datasheet of the 74 HC(T) 163. This was a very important step, as almost every part of this lab involved using this IC. For example, I needed to use the count mode of the IC, and all the necessary information for operating it in this mode was found in the datasheet. 3-Then, I tested legs of the IC (74 HCT163) to determine if it works or not. The legs; Q_0 , Q_1 and Q_2 was working properly. According to truth table, I chose Q_0 to pr, Q_1 to t2 and Q_2 to t1. 4- | OPERATING MODE | INPUTS | | | | | OUTPUTS | | | |----------------------|--------|----------|--------|--------|--------|----------------|----------------------------------|----------| | OPERATING MODE | MR | СР | CEP | CET | PE | D _n | Qn | тс | | reset (clear) | I | 1 | X | X | X | X | L | L | | parallel load | h
h | ↑ | X
X | X
X | 1 | l
h | L
H | L
(1) | | count | h | 1 | h | h | h | X | count | (1) | | hold
(do nothing) | h
h | X
X | I
X | X
I | h
h | X
X | q _n
q _n | (1)
L | Using jumper cables, connect the MR, CEP, PE, CET, and V_{cc} pins to 5V. Connect the GND pin to ground. Some pins, like the D pins, are not needed for this mode. Connect the CP pin to the positive probe of the signal generator, which should output square waves, preferably between 1 and 3 Hz. Connect the negative probe of the signal generator to ground. Ignore any unused pins. 5. Based on the truth table and my circuit design, I simulated the circuit on a breadboard using jumpers. I used AND, OR, and NOT gates for the simulation. Connect all V_{cc} legs to the positive terminal of the power supply (5V) and all GND legs to the negative terminal. #### -HC08-AND gate: #### -HC32-OR gate: #### -HC04-NOT GATE: 6- Finally, I added LEDs and resistors (560 Ω) to show my circuit is working according to my truth table. # C)Results Output-R1 results (matches with its truth table values): Output-R2 results (matches with its truth table values): Output-Au results (matches with its truth table values): ## **D)Conclusion** The goal of this lab is setting a logic circuit on the breadboard and simulate the truth table of the logic design and verify the results as a lighting LEDs. I could use my previous design but I could not. Studying datasheets was probably most important part. Moreover, datasheets are very helpful sources to design any circut. However, there were many problems. For example, there are 4-5 ICs in the lab (74HCT163) and just one of them was working. There were also limited AND and OR gates. In conclusion, I learned - -reading and understanding datasheets, - -implementing therotical circuit design into practical - -AND, OR, NOT gates